Maple Programming Guide

L. Bernardin
P. Chin
P. DeMarco
K. O. Geddes
D. E. G. Hare
K. M. Heal
G. Labahn
J. P. May
J. McCarron
M. B. Monagan
D. Ohashi
S. M. Vorkoetter

Copyright © Maplesoft, a division of Waterloo Maple Inc.
2016

Maple Programming Guide

by L. Bernardin, P. Chin, P. DeMarco, K. O. Geddes, D. E. G. Hare, K. M. Heal, G. Labahn,
J. P. May, J. McCarron, M. B. Monagan, D. Ohashi, and S. M. Vorkoetter

Copyright

Maplesoft, Maple, MapleNet, MaplePrimes, Maplet, Maple T.A., and OpenMaple are all trademarks of Waterloo
Maple Inc.

© Maplesoft, a division of Waterloo Maple Inc. 1996-2016. All rights reserved.

No part of this book may be reproduced, stored in a retrieval system, or transcribed, in any form or by any means
— electronic, mechanical, photocopying, recording, or otherwise. Information in this document is subject to change
without notice and does not represent a commitment on the part of the vendor. The software described in this
document is furnished under a license agreement and may be used or copied only in accordance with the agreement.
It is against the law to copy the software on any medium except as specifically allowed in the agreement.

Adobe and Acrobat are either registered trademarks or trademarks of Adobe Systems Incorporated in the United
States and/or other countries.

Java is a registered trademarks of Oracle and/or its affiliates.

MATLAB is a registered trademark of The MathWorks, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.
NAG is a registered trademark of The Numerical Algorithms Group Ltd.
All other trademarks are the property of their respective owners.

This document was produced using Maple and DocBook.

ISBN 978-1-926902-46-3

Contents

PrEefaceoeeieii e xxiii
1 Introduction to Programming in Maplec.ooeviiiiiiiiiieiieieeeeeee e 1
1.1 In ThiS CRAPLET ..uvvniiiiiie ittt et e e e e e e e e et e et e e eaenas 1
1.2 The Maple SOftWAIEovvniiiiiiiiiei e e e 1
The User INterfacecouuiiiiiiiiii e 1
The Computation ENGINecccoviiiiiiiiiiiiiieiiei e 1
1.3 Maple StateMENTSuuiveiieeiieieeeii et e et e e et eaeeae et e et e eaeeaneeaneeaneeanas 2
Getting Help ovnieniiii e 2
Displaying @ TeXt STIINEcvuuivniieeiieiiee et e et et e e ae e e e e e e e eeans 2
Performing an Arithmetic Operationcecuvviineiineiiieiiieieiieeieeieeeneen. 3
ASSIZNING 10 @ NAIMEivviiiiiii et et et et e e e e e e et e e e aeaeaenas 3
Using Maple Library Commandsccceeiiiiiiiiinniineiieiieiieineiineiinaienns 3
1.4 PIOCEAUIESuneiiie ettt ettt et e e e e 4
Defining a Simple Procedureooiiiiiiiiiiie e 4
Entering a Procedure Definitionc...oeiiiiiiiiiniiiiiieii e 4
Adding Comments t0 @ Procedurecocoviiiiiiiiiiiii e 7
Calling @ ProCedureuviiniiiiiieiiie e 8
Maple Library Commands, Built-In Commands, and User-Defined Proced-

UTES -ttt ete et et ettt et et et et et et ettt e e e e et et e ettt e e e enns 8
Full Evaluation and Last Name Evaluationccooooiiiiiiniiiiniinii, 9
Viewing Procedure Definitions and Maple Library Codec.ccoeevvnrnnnnnn.. 10

1.5 Interrupting Computations and Clearing the Internal Memory 10
Interrupting a Maple CompPutationuvivneiieiieiiieiineierieeieeieeeneens 10
Clearing the Maple Internal Memoryccoevviiiniiiniiieiiieiieeieeeeeeann 11

1.6 Avoiding Common Problemsccocoeiiiiiiiiiiiiiniie e 11
Unexpected End of Statementc.ooiiiiiiiiiiiiiiniieiei e 12
IMISSING OPETALOT ..vvueivieiieiteeieeiieei et et et ete et e et e et eeneeaneesneerneenerenaes 12
Invalid, Wrong Number or Type of Argumentsccceevveineiineiinnrnnnnnn. 13
Unbalanced Parenthesesccouuiiiuiiiiiiiiiiieii e 13
Assignment Versus EQUalityoooovviiiiiiiiiiiiiii e 13

1.7 EX@ICISES -ttt e e e e eees 14

2 Maple Language EIementsccouiiiiiiiiiiiiiiiiiiei e e 15

2.1 In ThisS CRAPLET ..ovviiniii et et e e e e e e e e e e eeaes 15

2.2 CRATACLET SEL ...eetniiiiee ittt ettt et 15

2.3 TOKENIS ..t 16
Reserved WOTdScouuniiiiee e 16
Programming-Language OPEeratorsceeuueiureinieineiineeieeieeiieriieesnersneeens 17
INAITIES . e e 20

2.4 Natural INTEZETSuivniiniiieie et e e e e eaens 21

2.5 SHIIIES 1oveiteii ettt et et et e e e e e e e e e et a et anaans 22
Length of @ SIrINgovviiiniiiii e 22

il

iv ¢ Contents

SUDSLIINES .. eeeii ettt et et e e e anns 22
Searching @ STIINEovvueiiiiiee ettt e e e e e e ees 23
String Concatenationc..veeuuuieeuueruieiii ettt eai et eei e e 23
Mutability Of StrNGSuoveiiiiei et 24
Special Characters in StrNGSvveeineiineiieiie e e e e e eee e eeneens 24
Parsing StIINESuuveniiiiii et e 25
Converting EXpressions to Stringscveeuveiniiiieiineiieiineieeieeieeieeinenns 26
2.6 Using Special Charactersoeeuviuieiiiiieiieine e e eaenas 26
TOKEN SEPATALOLSevvneiineiieeii et et et e e e e e e e e e e e e e eaneeans 26
Blank Spaces, New Lines, Comments, and Continuationc.c....... 27
Punctuation Marksoouuriiiiiiiiiiii e 28
EScape CRAraCtersc.uviuniiieiieie e ettt e e e eens 31

2.7 Types and OPErandsoceueeeueiineiineeieie e e e e e e e e eaneeans 31
DIAGS e e 31

1A Yo (I) o 1< 32
Operands AN OPoveneieeii ettt 34
2.8 Avoiding Common Problemsccceceuiiiiiniiiiiiiiiiniiinie e 37
Attempting to Assign to a Protected Namecccoeeeiiiiiiiiiiiiniiiinineennn.. 37
Invalid Left-Hand ASSIZNMENtc..oeiiuiiiiiiiiiniiiieii e 38
Incorrect Syntax in Parseccooveiiiiiiiiiiiiiiniin e 38
White Space Characters within a ToKenccooeiviiiiiiiiiiniiiniiieeeeeans 38
Incorrect Use of Double and Single QUOtescccvvinviiiiiiiiiiieineieannss 38
Avoid Using Maple Keywords as Namescccvvieriniiineiiineiiinneiinneenan. 39
2.9 EXEICISES . vvueetinetiiie ettt ettt et ettt et e e e 40
3 Maple EXPIESSIONS ..evuueiiiniiinetiii ettt ettt et e e 41
3. 1IN ThiS CRAPLET ...eevieiiieiii et et 41
TN 18 (T 11T 5 () o PN 41
Expressions and Statementsoveuueiieiineiinrieii e iee e e e eanaas 41
Automatic Simplification and Evaluationc...ccoooeiiiiiniiinniinnn, 41
Syntax and CONSIIUCLOTSvvuieneiieii et ei et et e e e e e ee e eaneeeneeens 41

I A 1 1 L PPN 42
Creating Names: Lexical CONVENtIONSoevuiiuiiineiineiineiineinneiineineeineennnes 43
3.4 Unevaluated EXPIESSIONScc..ueeiuniiiiiiiiiniiiin ettt ecei e 46
Protecting Names and OPtionsovuuviineiineiineineie e eeeaeeaeeaanas 47
GENEriC EXPIESSIONS ...vuniiniiieiineiie e et e e et et e e e e e e e e e e e eeanaes 48
Pass by Referenceooouiiiiiiiiei e 48
Displaying the Original Commandccoveeiiiiiiiiiiiiinine e 49
UnNassigning NAMIESoeuuiiuiiieii et iee e e e e e e et e e e aeea e e eenns 49
Evaluation and Automatic SImplificationc.coeeeiiiiiiniiiiniiiiniiinn. 50
Example: Defining a Procedure that Is Returned Unevaluated 51

3.5 NUIMDEIS ...ttt et ettt e e e e 53
TNEEZEIS .o 53

FLaCtIONS .. vieeieiiie it 53

Contents ¢ v

2 (G £ 54
Complex NUMDETSuvveiiiiiieiie et e e e e e e e e e eenns 58
3.6 Indexed EXPIreSSIONSccuuuiieuuiiiiiiiieeiie it 62
3.7 Member SEIECIONvveiiieiie e 67
TR 201 1 Uo7 o) s 68
Calls t0 PrOCEAUIESuvvniiieiie ettt eens 69
3.9 Arithmetic EXPIeSSIONScc..uieuuniiiiniiiiiiiiineiii et 70
ArIthmetic OPEIatorso.uueeeeeeeiii it e e e e e et et e e e e e e e e eeneees 70
Noncommutative Multiplicationccoeeviiiiiiiiineiiene e 82

S Tor 0] o 1 84
Forming Sums and Productsoeiuiiiiiiiiiiiiiie e 85
3.10 Boolean and Relational EXPressionsoveevvineiensiineiineiiieiieeieeieeineeenns 86
Boolean ConStantscc.uueeiuniiiiniiiineii e 86
B001€an OPEIatorsueieeineieeiie et et e et et et et e e e e e e e e e e 86
Relational OPETatorscceuuieiieiiieiii et 90
Efficient Boolean Iterationc.ovvueiieiineiieeiiei e 93
3.11 Expressions for Data StruCturesc.uvvuneiieiineiniieeie e eeeeeeaeeeenn 94
SEQUETICES ...ttt e et e e et e et et et e et e e e e ans 94
LSS ettt et 96

S S ettt et 98
1o (<N 99
Rectangular Tablesco.oviniiiiiiiiie e 100
3.12 Set-Theoretic EXPreSsionsc..eiuiiiiiiieiieiieieeie e eieeee e aieeeieeannas 101
1Y (3001 1S)] 111 o 101
Set INCIUSION ..eivineiiie et 101
Other Binary Operators for Setsoviuiiiiieiiieiiieieiee e 102
3.13 Other EXPIeSSIONS . ..uvvuieneiieiieiieeieeieeie et e e eaeeae e e e eaneanaeannas 104
Functional OPeratorsovuueiuniiineiieeiie et e e eens 104
(07030010101 15101 1 RN 105
NEULTAl OPEIALOTS ..eevvneiiiitieiie ettt ettt eeeeaie e 107
RANGES ..o 107
The Concatenation OPEratoroeuuueeeeunerineeieeieineeeneeaeenneeneenaeannns 109
The Double Colon OPeratoroeuueunrieneiieiieee e e eee e e eeneeens 111
SEIIES ..ttt e 112
314 AIIDULES . oeneeiieiii e 115
3.15 USING EXPIeSSIONS «...veviniiiiiiiieiiie ettt 116
Evaluating and Simplifying EXpressionscc..coevveviineiiniiieiniieiieennnes 116
Substituting SUDEXPIESSIONSvvuieneiineiieiieiieeiieeieeie e e e eaeeaneennnas 117
SUCTUIEA TYPES - evneteneiie et e ettt e e e et et e e e e eaneeannas 120

I 0 25 (S5 (o3 <L 124
4 Basic Data SIUCTUIESuiiuuiiiieiii ettt et ei e 125
o 0 I 08 S O -) S 125

4.2 INtrodUCHIONonieii e 125

vi ¢ Contents

4.3 Immutable Data StrUCTUIESuviuneiieiieiiee e et e e e e eanees 125
LISt ettt e 126
S ettt 132

4.4 Mutable Data StruCtUIeSccuviiniiineiie e e e 137
TADIES .. 137
ATTAYS oottt 144

4.5 Other Data Structure OPErationscc..ueeeuueeiuneeeiineeiieeiieeeieeeiiaeenenees 153
Filtering Data Structure EIementsccoiviiiiniiiiniiiniiiiniincineeiis 153
Converting Data StruCtUIESccuuiiuiiiiiiiiiie e eens 154

4.6 Other Data SrUCIUIESv.uieneiieiie e et e e e e e e e eeeees 155
RECOTAS ..t 155
I 72T PPt 157
(0 11 <] 1T PPN 159

4.7 Datad COCTCION ...eeuneiiin ettt et ettt et ettt e e e e e eeia e 162

4.8 Data Structure Performance CompariSOnscc.veeueenneennrenerinernnaennnnn. 162
INAEXINEG ..ttt 163
1Y (3001 TS)] 111 o 163
Building a Collection of Datacccoeiiiiiiiiiiiinii e 164

4.9 Avoiding Common Problemscccoviiiiiiiiiiiiiiieie e 165
Passing Sequences into FUNCtionsccoveviiiiiiniiiniiieiieieceee e, 165
Incorrect IndeX Valuescouvviniiiiiiiii e 165
Do Not Treat Lists and Sets as Mutablecooeeviiiiiiiiiiniiinieieen. 166

O LV 25 3 () T 167

5 Maple SEALETNENESueeeuniiiieiiie et ettt ettt et eaaes 169

RN B 6T 1§ 1P < S 169

5.2 INFOAUCHION ..evuniiiniiiiie et 169

5.3 Statement SEPAratorsc..veeuiiiiiiiiiiiiii e 169

5.4 EXPression StateIMENTsu.ieuuiiiuneeiieeiiieeiie et ettt et et e eeieeenane 170

R I NS Fea 1110 30U 170
Multiple ASSIZNMENT ...cceuuiiiiiiiiiiiii e 171

5.6 FIOW CONLIOL ..eviiiiiiiiii e 173
T 13153 T 1 =N 173
BranChingcooeiuiiniiiii e 173
00D et 177
Looping CommandSc.ueiuneiineiieiieeieeie et e e e e e e e eanns 182
Non-Local FIow Controlcocouiiiiiiiiiieie e 185

5.7 The USE StAteIMENTuieniieiieie et e et e e e e e e e e e e e eaannas 189

5.8 Other StateIENtsccuuniiiiiiii it 192
The quit STAtEMENTeettiiiii i 192
The save Statementoveiuiiiiiiiie e 193
The read StatemMEntcc.uviiiiiiiii it 193

5.9 EX@ICISES +vunteniinetineeie et e et e e et e et e e e e e e et e e e e e e e et e e e aanas 194

6 PTOCEAUIES ..o 195

Contents ¢ vii

6.1 TETMINOIOZY ..evuneiii ettt 195
6.2 Defining and Executing Procedurescccoeeeuiiiiiiiiiiiniiiineiiinecieeenn, 196
6.3 Parameter Declarationsceuuviiiiniiiineiiiniiin e 197
Required Positional Parametersccooeieuiiiiiniiiiniiiiniiiineiiincieeci 197
Optional Ordered Parametersc.ceeeuueiiiniiiiiiiiiniiiin e 198
Expected Ordered Parametersooeeuuniiiiiiiiiiniiineiiinecii e 200
Keyword Parametersoo.uviuiiiieiieiie e 200
The End-of-Parameters Markercooviiiiiiiiiiiiiiiee e 202
Default Value Dependenciesceeuvvueriiieiineiieiineiieeie e eiee s 203
Parameter MOAIfIErSovvuiiniiieie e 204
Procedures without Declared Parameterscccoeeeviiiiniiiniiiiineinnniennn. 208
6.4 RETUIN TYPC . oevniiiiiiie ettt 209
6.5 The Procedure Bodyoeeiuiiiiiiiiiiniiinie e 209
I T er | o151 1 PP 210
L0 751507 4T 210
Variables in Proceduresoouuiiiiiiiiiiieie e 217
Non-Variable Name Bindingscoouiviiiiiiiiiiniiiiiieiieee e 220
The Statement SEQUENCEeeuueieeiiieieei et e e e e e e 220
Referring to Parameters within the Procedure Bodyc.ccoeviiiiiiiiinni. 221
6.6 How Procedures Are EXecutedc.ovvvniiiiiiiiiiniiieiiei e 227
Binding of Arguments to Parameterscoceeviiieiiniiiiiiiieieie e, 229
Statement Sequence INterpretationoeveviineiireiniiiiiiein e, 232
6.7 Using Data Structures with Proceduresccoovviiiiiiiiniiiniiniinieenn 241
Passing Data Structures to Proceduresccoevviiiiiiniiiiiiniineineeeenn 241
Returning Data Structures from Proceduresccoeeovviiiiiiiiniiineinnnnnnn. 242
Example: Computing an AVETageeeuuneiiinieiinriiiineeiineeiieeiieeeineeennn 243
Example: Binary Searchcccocoiiiiiiiiiiiiiiiiniiin e 244
Example: Plotting the Roots of a Polynomialccocoviiiiiiiinnin. 245
6.8 Writing Usable and Maintainable Proceduresc...ccooveeiiniiiiiiiinnninnn... 249
Formatting Procedures for Readabilityc.oocoiiiiiiiiiniiiniii. 249
Commenting YOUr COdeovuniiiniiieiieiiei et 250
6.9 Other Methods for Creating Proceduresc.oevvuviieiieiiniineineinneannens 252
Functional Operators: Mapping Notationcccevenviinriineiineiineiineinaannns 252
The unapply FUnctionocoeiiiiiiiiiiiiiie e 253
ANoNymous Proceduresouuviuuiiiiiieiie et 255
6.10 RECUISION ...utiiieiieiii e ettt e e e e et e e e e e e e e eaeees 256
6.11 Procedures that Return Procedurescocooviiiiiiiiiniiiiiiineeeeeen 258
Example: Creating a Newton Iterationccoeeeiiiiiiiiniiiniiiiniiiineen. 258
Example: A Shift Operatorc.uvieeieeieeiiee e een 261
6.12 The Procedure ODJECtovvniieiiiiiie it 262
The Procedure TYPE ...c.ueeneiineiie ettt e e eens 262
Procedure Operandsc..oeiuiineiieii et 263

6.13 EXEICISES . outnininininiei ettt 266

viii * Contents

7 Numerical Programming in Maplec.ccoiiiiiiiiiiiiniiiiniiee e 267
8 A G T Y 1P < S 267
7.2 Numeric Types in Maplecc.oviiiiiiiiiiiiiiniin e 267

INEEEETS ..o 267
RALIONAIS ..eniiiii i 269
Floating-Point NUMDETScoouuiiiiiiiiiniiici e 270
Hardware Floating-Point NUmberscccooceiiiiiiiiiiiiiiiinnece e, 272
Extended NUMETIC TYPES ...uevviniiiiiiiiniiiieiiie e 273
CompleX NUMDETS ...c.uuiiiiiiiiieiii et 274
Non-nuUMETic CONSTANESuueevniiiineiiieeii ettt ettt eeaieeaines 275
7.3 More about Floating-Point Numbers in Maplec.o.ocoeviiiniinine. 275
Representation of Floating-Point Numbers in Mapleccoooeeiiiiiniinnn.. 276
Precision and ACCUTACYceuuneiiinieiiniiiie et ettt ee e 277
Floating-Point Contagionoeceuuviiiiniiiiiiiieeiin e 279
More on the Floating-Point Modelcccoviiiiiiiiiiiiieeee, 282
7.4 Maple Commands for Numerical Computingccc.ceeuveiiiiiiniennneennne. 283
The evalf Commandooooiiiiiiiiiiiii e 283
NUMETIC SOIVETS ...eiiiiiiiei e e 287
The evalhf Commandc.cooiiuiiiiiiiiiiiii e 287
Numerical Linear Algebracoviiviiiiiiiiiiii e, 290
7.5 Writing Efficient Numerical Programscccocoiviiiniiiiniiiniiiincnees 294
Writing Flexible Numerical Procedurescc.ooviiiiiiiiiiiiiineiiieieeeeans 294
Example: Newton [terationccovieuiviiiiniiiniiiiiiii e, 296
Example: Jacobi Iterationccooviiiniiiniiiiiiiieis e, 300

8 Programming with Modulesccooeiiiiiiiiiiiiii e 307
8.1 TN This CRaPLer ...oveniiiiiieii et et e e e e e ees 307
8.2 INtrOdUCHIONuiiiiiiii it 307

Encapsulationcouuiiiiiiiiiiiii e 307
Creating a Custom Maple Packageccoooviiiiiiiiiiiiiieiecee, 307
Creating ObBJECLS ...ovuneiieiiei ettt et e et e e e e e et et e e e e eaneenns 307
Creating Generic Programsooceuriiiniiiiniiiiiiiiii e 308
8.3 A Simple EXamplecoouiiiiiiiiiiiiiii e 308
8.4 Syntax and SemMAantiCsceuureiiiiiiiiiiin et 309
The Module Definitionccuuviiiiiiiiiiiiiineie e 309
The Module Bodyooouniiiiiiiiiiii e 309
Module Parameterscc..ooveiiiiiiiiiiiiiie e 310
Named MOdULESuieiuniiiiii e 310
DECIATAtIONSeevieiiie ettt 312
Exported Local Variablescooieuiviiiiiiiiiniiiiiiin e 314
MOAULE OPLIONS .evuitneiteiieeii et ie et e et e et e et e e e et e et e eaneeaneeaneenns 318
Special EXPOILS ..ovuieniiieiieie et 319
Implicit Scoping RULESviuiiiiiiieie e 324

Lexical Scoping RUIEScouiiiniiiiiie e 324

Contents ¢ ix

Modules and TYPES ...uvvneiineiieieei ettt e 328
TR AT ' 329
Creating RECOTASvvniieiie et 329
RECOTA THPCS vttt et e e e eens 331
Using Records to Represent QUaternionscc.veeeveinieinniinerieiineiineannns 331
Object INNEITTANCEvvuiiiiiie e 332
8.6 Modules and use Statementsccuuueeiiniiiiineiiineiineii e 334
Operator Rebindingcoeiiiiiiiiiiiiie e 335

8.7 Interfaces and Implementationsccouviiuiniiiiniiineiiiiniren e, 339
Generic Programming as a Good Software Engineering Practice 339
Distinction between Local and Exported Variablesc.c.ccooveiiiniiinnn. 340
INEETTACES . o.eeeii e 340

A Package for Manipulating Interfacescooeeiviiiiiiiiiniiiniieieen. 341
The 10ad OPtON ...vvuieneiie e ettt e e e e e ean s 345

9 Object Oriented Programmingoeeuueiieiiiiiniiiiei e e eaeeee e e 347
0.1 I This CRAPLET ...evvneiiiiieii et e e e e e ees 347
9.2 Introduction To Object Oriented Programmingc...ceuoveevineieinneinnneenan. 347
TEIMINOLOZY ettt 347
Benefits of Object Oriented Programmingccoeeviiiiineiineiineiinnnnnn. 347
9.3 Objects i MAPLEuiiniiieiie et 348
Creating a New Class of ODJECtSvvuviiiiiieiieie e 348
Creating More ODJECES ...ovuniiniiieiii e e e e e eans 348
ODbJECtS ANA TYPES - vvneenneineineii et et et e e e e e e e e e e e eaneeaneeens 349
9.4 MEthOUSiiiieiiie e 349
Methods Can Access Object Localsc.oveviiiiiiiiiiiiieieeeeeeeie e 349
Method Names Should Be Declared staticcccoeeevveiiineiiiniiiinneennneen, 349
Methods Are Passed the Objects They Manipulateccoeeevuveiinnieennnne. 349
Calling Methodsccouuiiiiniiiiiii e 349
Objects in Indexed Function Callsccovuiiiiiiiiiiiiiiii e, 350
Special MethOdsovvniieeiiii e 350

9.5 Overloading OPEratorseeuueiineiieeieeiietietie et eeaeereeaeenaeeeaannns 350
SUpPOrted OPEIatOrSoevneieeieeii e e eie et et e et et et e e e e eaneenneas 351
Implementing OPEratorsceuueiueieeeieri et eire e e e eeeieeneanns 351

9.6 Overloading Built-in ROUHNESoevviiiiiiiiieiieie e 351
Overridable Built-in ROUtINEScoveiiiiiiiiiiiiie e 351

L > 11110 1< 352
9.8 Avoiding Common MiStaKesoeeuuueiiiiiiiiiniiiineiiieeiie e ceieenieees 357
Overloaded Operators and Built-in Routines Must Handle All Possibilities 357
Make Sure to Access the Correct ROUtINGocevviiiiiiiiiniiiiniiiniiiene, 359

Be AWare of NULLovniiiiiii e 359
Lexical Scoping Does Not Circumvent localcccoeviiiniiiiniiiniin. 359

10 Input and OULPULovuniiei et e e e e e e eaneees 361

10.1 In This Chaptereeuniiiiiiiie e 361

x ¢ Contents

10.2 INtOAUCLION .. eviiine st e et e et e e e e e e e eneees 361
10.3 Input and Output in the Worksheetccooeeiiiiiiniiniinen, 363
INEETTACES . .vueeiie e 363
Interactive OULPULvveiiiii et e e e enes 364
Interactive TNPULoevuniiiiii e 366
(@11 10) 10117221 8 () 1 AP 366
10.4 Input and Output With Filesccoviiiiiiiiiiiiii e 367
INErOAUCLION «..oeviiiiii e 367
Working with General Filesccooiiiiiiiiiiiii e 367
Importing and Exporting Numerical Dataccooociiiiiiiniiiniinicncen. 372
Files Used by Mapleccouiiiiiiiiiiiiiiii e 374
10.5 Reading and Writing Formatted Dataccoooiiiiiiiniiniiinne 376
The scanf and printf Commandscoviiiiiiiiiiiiii e 376
FOrmat SErINES «...couuniiiiiiiiiei e 377
Related Commandscc.uviiuiiiiiiniiiii e 378
10.6 USE Ul ULIIEIES .vvuvveeiieiii i e e et e e e e e ees 378
The StringTools Packagecccouiiiiiiiiiiniiiiii e 378
Conversion COmMMAaNScc.ueeuieiiieeiieiiin et eeieenen 379
10.7 2-D Math oo 379
INErOAUCLION ..ueviii it 379
The Typesetting Packageocovviiiiiiiiiiii e 380
Additional TIPS ...oveniineii e 381
10.8 EXCICISES +.uevvnereneieeiieeti et et et e tie e e e e e e e e e e e e e e et e et e et e eeeeneanns 381
11 Writing Packa@esc.uovvniiieiieiie ettt 383
11.1 In ThisS CRAPLET ..evnieneiiiii it et e e e e e e anees 383
11.2 What Is @ PACKAGEovvniiiiiieiiei e 383
Packages in the Standard Librarycooeviiiiiiiiiiiiiiiiiiee e, 383
Packages Are ModUIEScouiiiiiiiiiiiei e 383
Package EXPOItSovuniiiiiieie et 384
Using Packages Interactivelycoooiiiiiiiiiiiiiiiiieee e 384
11.3 Writing Maple Packages By Using Modulesccocovviiiiiiiiinniineennn.n. 385
A Simple EXamPleoooiiniii s 385
CUSLOM LADIATIES ...uvvieiineiie ettt e e e e e e ees 387
11.4 A Larger EXamplecoouiiiiiiiiiiiii e 389
ModuleLoadoiiiniiiiii e 389
The Preprocessor and Structured Source Filesooevvviiiiiniiiniinniiennnn.e. 390
SUDPACKAZES ..oeeeeeeiie ettt 392
11.5 Example: A Shapes Packageccooeiiiiiiiiiiiiiniiiiiininceccee 393
Source Code Organizationeeeeeereinruneiineeineeineeeeeneeeneeaeeaeennns 393
Package ATChiteCtUI®vivniiiiii it 394
The Package APLooeiiiii e 395
The make Procedureoovvniiiiiiieiie e 395

The area ProCedurecoooiniriiinii e 396

Contents ¢ xi

The circumference Procedureccoeeeuiiiiiiiiiiniiiiniin e 396
Shape RePresentationceuuvieuiiiiineeiieiii e 396
Procedure DispatChingcc.viiiiiiiiniiiiiiiinn e 396
Dispatching on Submodule EXPortscovuvieiiiiiiiiiiiiiii e 397
Conditional DispatChingcc..veiiiiiiiiiiiiiiiiin e 398
Table-based DisSpatChingoveuueiieiiiiieiiie e 398
Shape-specific SUbMOAUIESoviiiiiiiiiiii e 399
The point SUBMOAUIEoiiiiiiiii e 399
The circle Submodulecoooiiiiiiiiii 400

L0 € 51] 1 ot 403
12.1 In This Chaptereeuniiiiiiii e 403
12.2 INEEOAUCLION .. evtiie et e e e e e e e e e e ees 403
Do (ORI 1Y 21 o) (R 403
Generating @ Plotoouiiiiiiiii e 404
12.3 The PLot LIDIarycoouniiiiniiieii e 405
Generating 2-D and 3-D PlotScovuiiiiiiiiieee e 406
Plotting Points, Polygons, and TeXtceveuviiniiineiiieiieieeieeieeieeeeenn, 413
Combining PIOtSunieiiieii e 419
Specialty PIOtS ...oouiieiie e 421
Other Packagesuviiuuiiiiiiiiii e 427
12.4 Programming With PIOtScciiiiiiiiiiiiii e 430
F N D I 2 €111) T 430

A 3D EXAMPIE . .oeniieiie e 433
12.5 Data StIUCLUIEScevueiiniiieiieiii et e 434
Types of Data SIIUCTUIESuovvneineiiiei e e e e et e e e e e ean e 435
Creating Plot Structuresc.oovieiiiiiiiniiiii e 437
Altering Plot STIUCIUIESc.uuiiitniiiiiiiiiiii e 438
12.6 Customizing PIOtScouniiiiiiii it 438
Controlling the Samplingccouiiiiiiiiiiiiiiie e 438
(070 1) PP PP PP 440
S1Z€ ANA VIEW ..uiiiiiiiiii e 442
0TS 51 = 443
Axes and GIIAIINESeeeuniiiiiiii e 443
CoOordinate SYSTEIMS ...vuueieiieiei et et et e et e e e e e e e e e e eeneeaneenns 444
N84T @] 415 Te) 1 T 445
12.7 ANIMATIONS .. ettteeiineiii ettt et ettt e e et et e eaiaeeainee 445
Building an Animation with plots:-displayccocceviiiiiiiiiiiiiiieineeennns 445
The plots:-animate commandcoouviiieiiieiineieii e e e 446
3-D Animations with the viewpoint Optionceeevvviiieiniiinniieiineiennnn. 446
Other Animation Commandsccuviiuieiiiiiiiniinen e 447
Displaying an Animation as an Array of Plotsccoooeiiviiiniiniinni, 447
12.8 Miscellaneous TOPICS ...cceuuneeuuneirineiiieeiie et 447

Efficiency in PIOttNgcoouiiiiiiiiiiii e 447

xii ¢ Contents

Interfaces and DEVICEScuuviiniiieiie e 448
12.9 Avoiding Common Problemscoeeeiiiiiiiiiiiniiiinii e 448
Mixing Expression and Operator FOrmsccoocovviiiiiiiiniiiiniiinieincen. 448
Generating Non-numeric Datac.ccoviiiiiiiiiiiiiiiii e 449

13 Programming Interactive EIEmentsc.ccoeeuuiiiiiiiiiiiiiiiiniiiiniiccie e, 451
13.1 In This Chapteroceuniiiiiiii e e 451
13.2 Programming Embedded Componentscceeeuviinniinniieiineiineinannnnes 451
Adding Embedded Components to a Documentccovevuviineiineiinnnnnn. 451
Editing Component Propertiesccoveiuieiiieiiiiiniiieiineiieeieeeeeaeeaeeens 452
Example: Creating a Tic-Tac-Toe GaAMEoevvveneiineiieiieiineieeineeennnn. 453
Retrieving and Updating Component Propertiesccoveeevienviineiineennne. 455
Using the GetProperty Command to Retrieve Propertiesc...ccecenee.n. 455
Using the SetProperty Command to Update Propertiescoeeveinnennn. 456
Using the Do Command to Retrieve and Update Component Properties 456
13.3 Programming Mapletsocueiuieiiieiiiiiiiie e e e 457
Layout Managersoouuviiniiiniiineiiei et 457
BOX Layout ...oonini e 458
(15 1 B 57 1 1 P 460
Border Layoutooueieneiie e 462

14 Advanced CONNECHIVILYuvuuieneiieii ettt et e e e et e e e e e e eaneeaneees 467
14.1 In This Chapteroceuniiiiiiii e 467
Connecting to the Maple Engineccocoovviiiiiiiiiiiiniieeieeeeeeeeee, 467
Using External Libraries in Mapleccoviiiiiiiiiiiiiiiieieeeeeeei, 467
Connecting Maple to Another Programccc.ccooviiiiiiiiiniiiniini, 467
C0de GENETATIONeevuniiiieeii ettt ettt ea e 468
LY o) (<) < N 468
Computation on Demandcoooiviiiiiiiiiiiii e 468
Embedding a Maple Application in a Web Applicationc...cccveennneene. 469
14.3 OPENMAPIC ...uoiiiiiiiiei i 470
Runtime Environment Prerequisitesccouviiuniiiniiiiniiiiniiineineeann, 471
INtErfAce OVEIVIEW ...uvvuniiiiiiieii et e e et e e e e e e eens 471

(O @ e ol 251111) 473
L0 25 1111 o) LN 475
Java EXamPLe ...o..iiiiniiiiiii e 477
Visual Basic 6 EXamplecoooiiiiiiiiiiiii e 478
Visual Basic .NET Exampleccoovuiiiiiiiiiiiiiie e 479
MEMOTY USAZE ..evnieiiiiiiit ettt e e e 481
14.4 The Maple Command-line Interfacecccoccooiiiiiiiiiiniiiniininne. 481
Batch FIles ..o.uieniiii e 482
Directing Input to @ Pipelineccoooviiiiiiiiiiiii e 482
Specifying Start-up Commandsceeeuviiniiineiiieiineiieei s 482
14.5 External Calling: Using Compiled Code in Maplec.cocceveiiiniiinnninnn.e. 483

Calling a Function in a Dynamic-link Libraryccooooiiniiiiiinn. 483

Contents e« xiii

Specifying Parameter Types for Function Specifications 486
Scalar Data FOImAtsoviiiiiiiiiiiniii e 486
Structured Data FOrmatscc.ovieuuiiiiiniiiniiiincn e 487
External Function Interfacec.ooooiviiiiiiiiiiiiniin e 487
Specifying Parameter Passing Conventionseeevveueinneinnrinnrineeennnnn. 490
Generating Wrappers Automaticallyccooiiiiiiiiiiiiiniiiniieee, 491
Passing Arguments by Referencecooevviiiiiiiiiiiiiiiii e, 492
External APToiiiiiii e 494
SyStem INTEGTILY ..evuneiiiieiii e e 494
14.6 Accessing Data over a Network with TCP/IP Socketsc...ccoeevennniennne. 495
SOCKEE SEIVET ...uiiiiiiii e e 495
SOCKEE CLENE ..eeuiiiiie it e 495
14.7 Code GENEIALIONeeuueiiieiiieiii ettt et ettt ea e e e e 496
Calling CodeGeneration Commandsc.oeeuneiieiieiineiierierieiieeennenn. 496
Notes on Code Translationcoeuveeiuiiiiiiiiiniiiineii e 497
Translation ProCeSScc.uviiuuiiiiiiiiieii e 497
Example 1: Translating a Procedure to Javacccoeceiiiiiiniiiiniiinniinnneen, 498
Example 2: Translating a Procedure to Cc.ccoiviiiiiiiiiniiiniiiiiciicenen. 498
Example 3: Translating a Procedure to Fortranc...ccooeeviniiinninen, 499
Example 4: Translating an Expression to MATLAB®cccooevevviennniennn. 499
Example 5: Translating an Expression to Perlc...ccoooiiiinn. 500
Example 6: Translating an Expression to Pythonccoooeviiiiiinnnn, 500
Example 7: Translating Commands to Rccoooiiiiiiniiniis 501
Example 8: Translating a Procedure to Visual Basicc...cccoeviiviiinne. 501
Example 9: Using the defaulttype and deducetypes Options 501
Example 10: Using the declare Optionccecevviiiiiiiiiiiiiieiieieeiieens, 502
The Intermediate Codecovuiiiiiiiiiiiiiiini e 502
Extending the CodeGeneration Translation Facilitiescccooceveeenneen. 503
The Printing Phasecoiuiiiiiii e 503
Defining a Custom Translatorc.cceviiiiiiiiiien e 504
Using a Printer Moduleo.oiiiiiiiiiiiiei e 504
Language Translator Definitionccooviiiiiiiniiiinin e, 505
Using the Define Commandcviiiiiieiiniiiiiiie e 505
Creating a Language Definition Moduleccooviiiiiiiiiiiniinineeeenne, 506
Using a New Translatorcc.vvieiiiiiiiiie e 507
14.8 CAD CONNECLIVILY ..evvneiiieiiietii ettt ettt ettt eaieeaanes 508
14.9 Maple Plug-in for EXCelcooiiiiiiiiiiiiii e 508
14.10 Connecting MATLAB® and Maplecccoveeiiiiiiiiiiiiiniiiiniiiineciieeene, 509
Accessing the MATLAB® Computation Engine from Maple 510
Accessing the Maple Computational Engine from MATLAB® 510

15 Parallel Programmingcoouuviiuiiiiiiniiiieiii e 513
15.1 In This Chapteroeeuniiiiiiii e e 513

15.2 INEFOAUCLION .enitininieie ittt et 513

xiv * Contents

15.3 Introduction to Parallel Programming with Tasksccc.cccoveiiiiiiinnninnnne. 514
Parallel EXECULIONcvuuniiiiiiiiici e 514
Controlling Parallel EXECULIONc.vviniiiniiiiiieie e 518

15.4 Task Programming Modelcooiiiiiiiiiiiinii e 522
TASKS et 522
The Task TTEE ...eevuniiiiiiii et e 523
Starting TASKSv.uiineiie e 523
Task Mana@emMENtoeuueiuneiineiieiiei e et e e et e e e e e e eaneeaneenns 525

15.5 EXAMPIES oeueiiiiiiie et 530
The N Queens Problemoooiiiiiiiiiiiiii e 530

15.6 Limitations of Parallel Programmingc...ccoooiiiiiiiiniiiiniineiinennnnn. 533
) 331) A o T (<P 533
MaPIE INTETPIOLET ..eevueeiiteiiii e 533

15.7 Avoiding Common Problemscoeeeuiiiiiiiiiiiniiinii e 533
Every Execution Order Will Happenccooiviiiiiiiiiniiiiieeeeeen 533
Lock around All ACCESSESuueeruneiiieiiieiiie e e 534
Debugging Parallel Codeooouiiiniiiniiiieieie e 534

15.8 Introduction to Grid Programmingcceeeveiviinniineiineiieiineinennnnns 534
Starting a Grid-Based Computationcceveieieinieinniiieiieiieiineineeennnn. 534
Communicating between NOAEScc.uviiiiieiieiieiiei e een 535

15.9 Grid EXAMPILES ...covuniiiniiiiiiie e 537
Computing a Mandelbrot Setc.vviiiiiiiiieiiie e 537

15.10 The Grid Computing TOOIDOXccuuuieriniiiiiiiiiiiiiin e 544

LS I 511721) R 544
MEMOTY USAZE «.uevnieiniiiiiit ettt e e 544
Cost of COMMUNICATIONuuiitiiiiineiiie ittt et eai e 544
Load BalancCingc.oeeuiiniiiiiie et 545

15.12 TroubleShOOtINgc..ueiiiiiiiiiiiir e 545
DeadloCKINg ...uoveniiieeie e 545
libname and Other Engine Variablesccooviiiiiiiiniiiiniiiniiinccene, 545
MiSSINg FUNCHONSuveniiiiiiiie e e 545

16 Testing, Debugging, and Efficiencycccooeiiiiiiiiiiiiniininceeen, 547

16.1 In This Chapteroceuuiiiiiiii e e 547

16.2 The Maple Debugger: A Tutorial Exampleccoovieiiniiiiniiinniininn. 547
EXAMPIE ..ot 548
Numbering the Procedure Statements Ic.oocoiviiiiiiiiniiiiniiiniene. 549
Invoking the Debugger Iooouiiiiiiiiiiii e 550
Setting a Breakpointiiuiiieieie e 550
Controlling the Execution of a Procedure during Debugging I 551
Invoking the Debugger 11ooiiiiiiii e 555
Setting @ WatChpOIntcouiiuiiiiiie e 555

16.3 Maple Debugger Commandscc.veueiiieinneiieeieeieiineineeeeaneeanenns 559

Numbering the Procedure Statements ITccoveiiiiiiiiiiiiiiniee, 559

Contents ¢ xv

Invoking the Debugger Ic..ooiiiiiiiiiiii e, 559
Controlling the Execution of a Procedure during Debugging IT 567
Changing the State of a Procedure during Debuggingc...ccoo.ciiiiin 567
Examining the State of a Procedure during Debuggingcc.coveiniinns. 570
Using Top-Level Commands at the Debugger Promptcooociiieiniinnnn. 574
RESLIICHIONSeiiie i 574
16.4 Detecting EITOTSiiuniiiiiiie i e 575
Tracing @ Procedurecoouiiiiiiieii e 575
USING ASSEITIONS ..vereieriietineeteeie et eete et et et e e eeneeaneeaneeaneeneaneanaeannns 578
Handling EXCEPLIONSoiuuiiiniiieiiieiiie et e e 581
ChecKing SYNtaX ...c.uniieiiiieii ettt e e e eenns 583
16.5 Creating Efficient Programsccoouiiiiiiiiiiiiii e 584
Displaying Time and Memory StatiStiCseeueiureinriinriineiieiieiieeennenn. 584
Profiling @ Procedureoviuiiiiiiiiie e 587
16.6 Managing RESOUICESuiuneiineieeii et et et e e e e e et e e e e eaneeanees 590
Setting a Time Limit on Computationscccceeeuueriineeiuneeiiineeiineeninenn. 590
Garbage COlECHION ...vuuieeiiei et e e e e e eans 592
Other Kernel Options for Managing Resourcesccceveuvvenniineinneinnnnnn. 592
16.7 Testing YOUT COAE ...ceuuiiiiiiiieiiieiii e 593
Verifying Results with Verifycoooviiiiiiiiiiii 593

A Simple Test HArnessc.vvueiniiiiiieie e 594
WIItING GOOA TESS ..vuevneiieiieeie et eens 595
TSt COVEIAZE «.eneniiiteiie ittt et et ettt et et eaes 595
160.8 EXCICISES .uevvneieneieeiieeeieei et et e te et e e e e e e et e e e e e et e et e et e eaeeneenns 596
A Internal RepreSentationeiieeiineiineiieine e e et e e e e e e e 599
A1 Internal FUNCHIONSovuiiiiiie e e e 599
EVAIUALOTS .. evniiii it 599
Algebraic FUNCHONSiiiiiiiiiiiiiicii e 600
Algebraic Service FUNCHIONScc.viiiiiiniiiei e 600
Data Structure Manipulation Functionsc...ccoeviiiiniiiniiiniinninncen, 600
General Service FUNCHONSc..ocivuiiiiiiiiiiiin e 600
A2 Flow Of CONLIOLvvniiiiee et 600
A.3 Internal Representations of Data TYPesoeeuuviiiiiiiiiniiiiniiiiiiiiinciinn 601
AND: Logical ANDiiiiiiiiiiiie e 601
ASSIGN: Assignment Statementcoeuuveeneeineiineiieiieeieeierieeieennans 602
BINARY: Binary ObJECtcc..uviiiuiiiiiiiiineiiieeiie e 602
BREAK: Break Statementc.uvvveiiniiiiiieiiei e e e 602
CATENATE: Name Concatenationc..veeueerneernerenernnrenneenneeneeenaenns 602
COMPLEX: Complex ValUecovuviiiiiiieiiiiieii e 603
CONTROL: Communications Control Structureccceeevuneierneennneennn. 603
DCOLON: Type Specification or TeStceeuvieneieneiieiineiieeieeieeieeenenn 603
DEBUG: DEDUZ ... oeeviiiiieiiie et 603

EQUATION: Equation or Test for Equalityccccoceiiiiiiniiiiniiiniiinennn.. 604

xvi * Contents

ERROR: Error Statementcoveuiiiiiiiiiiiiiiiiiiii e 604
EXPSEQ: EXPression SEQUENCEuvvnieneiineiieiieeiieeieeineeieenaennnaannannnas 604
FLOAT: Software Floating-Point Numberccoeviviiiiiineiieiineiieennens 605
FOR: For/While Loop Statementccoveeuveiniiineiineiieiieeieeieeieeeneeen. 605
FOREIGN: Foreign Datacccuviiiiiieiieieiee e 606
FUNCTION: Function Callcuuviiiiiiiiieiieiei e e e 606
GARBAGE: Garbageccuueiieiiiiiieie e 606
HFLOAT: Hardware FLoatc.oviuiiiiiiiiiieiee e 607
TF: T StAtemMENt ..oo.ueeiiiiii e 607
IMPLIES: Logical IMPLIESccooiiiiiiiiiiie e 607
INEQUAT: Not Equal or Test for Inequalitycccoveevuniiiiniiiiiiiiineenn. 608
INTNEG: Negative INteEETovvneieneiieiiieie et 608
INTPOS: POSItiVe INtEZET ...vvneieneiieiieeie e 608
LESSEQ: Less Than or Equalccoooviiiiiiiiiiii e 609
LESSTHAN: Less Thanooouviiniiiieiieiieie e 609
LEXICAL: Lexically Scoped Variable within an Expression 609
|31 IS Bl T PR UPN 610
LOCAL: Local Variable within an EXpressionccc.ccooveeiniiiinieinnniena. 610
MEMBER: Module Membercoouuviiiiiiiiiiieeieiie e 610
MODDEF: Module Definitionccc.oeiuieiiiiiiiiniiieieieeeeeeeee e 610
MODULE: Module INStancecceuuveiiniiiiineiiiniiiineiiieeiieccie e, 612
NAME: Tdentifleroceuuiiiiiiiieiie e 613
NEXT: Next Statementccovieuiiiiiiiiiiiie e 613
NOT: Logical NOT ...ooiiiiieiiiie it e e 613
OR: Logical OR ...ovniiiiiiiiiiei e 613
PARAM: Procedure Parameter in an EXpressioncoevvvvieneinnninnnnnnn.n. 613
POLY: Multivariate Polynomials with Integer Coefficientsc.......... 615
POWER: POWET ... 616
PROC: Procedure Definitionceuviuneiineiiieiieieei e eie e ieeae e 616
PROD: Product, Quotient, POWErcccviiiiiiiiiiiiiiiiiiie e 618
RANGE: RaN@Evniiiiiiiiiii e 618
RATIONAL: Rationalcooouiiiniiieieiiie e 618
READ: Read Statementc.uviuneiineiieiieeie ettt e e e e e 618
RETURN: Return Statementcoooiiiiiiiiiiiiiiiiiiiei e 619
RTABLE: Rectangular Tablecovvuiiiiiiiiiniiiiiieie e 619
SAVE: Save Statementc.oiuuiiiiiiiiiiee e 620
SDPOLY: Sparse Distributed Multivariate Polynomial 621
SERIES: SETIES ..uteiineiiieiii ettt et e eeans 621
SE T SOt it 621
STATSEQ: Statement SEQUENCEc.ueuuiuniiniiniiiieieieieiee e 622
STOP: Quit StateMENTtuvviniitiieiit i e et ee e e e eenens 622
STRING: Character Stringcevuueiuneinneiirei e eeeeaieeaeeieeineeeaenns 622

SUM: Sum, DIfferencecooovninieiii e 622

Contents ¢ xvil

TABLE: Table ...ceiuiiiiiiii e 623
TABLEREF: Table Referencec.oovuviiiiiiiiiieiieiieie e 623
TRY: Try Statementcooiiiiiiiiiiiiiie e 623
UNEVAL: Unevaluated EXPressioncoeuvieneinneiniinneieeieineiinennnannnns 624
USE: Use Statementc.viuuiiiiiiiiiniiiii e e 624
XOR: Logical EXCIUSIVE-OFccuuiiiiiiiiiiiieii e 624
ZPPOLY: Polynomials with Integer Coefficients modulon 625
A4 Hashing in Mapleoiuiiiiie e 625
Basic Hash Tablesoviuiiiniiieieie e 626
Dynamic Hash Tablesc.couuviiiiiiiiiiiiiiiin e 626
Cache Hash Tablesc..uiiiiniiiiiiiiiii e 627
The Simplification Tablecoiiiiiiiiiiiii e 628
The Name Tableoouniiiiiiie e 629
Remember Tablesc.uviiniiiiiie e 629
Maple Language Arrays and Tablesccouvviiiiiiiiiiiiiiiei e 630
Maple Language Rectangular Tablescooeeuviiiiniiiiniiiiniiiiniineeis 630
o) 21011 631

xviii ¢ Contents

List of Figures

Figure 1.1: Maple ToOIDArocouuiiiiiie e 11
Figure 2.1: EXPIession Tccuuuiiiuniiiiieii et 35
Figure 2.2: EXpression DAGcoouiiiiiiiiie e 36
Figure 2.3: Actual Expression DAGcociiiiiiiiiiiii e 37
Figure 3.1: eXpr DAG ..o 80
Figure 3.2: subsop EXample DAGSceeuiiiiiiiiiiiiiii e 118
Figure 11.1: Organization of Package Source Filesccooeiiiiiiiiiiiiiiiinni, 394
Figure 11.2: Design of Packageoovviiiiiiiiiiieie e, 395
Figure 13.1: Code Region for an Embedded Componentcccuvveeiiieinnnaennn.. 453
Figure 13.2: Border Layout Diagramcccoeeiuiiiniiiiiiiieiiieiieiieeiie e eieeanean 463
Figure 14.1: Maple in EXCeliiiiiiiii e, 509
Figure 16.1: The Maple Debugger in the Standard Interfacecco.ooiiiinniii. 548

XiX

xx * List of Figures

List of Tables

Table 2.1:
Table 2.2:

Special Charactersuviiiiieiiie e e ea e 15
Reserved KeyWOrdscoueiiniiiiiiiiiiiiie e 16

Table 2.3: BiNAry OPEIratorsScvuuiiuiineiineiieiietieeiteetteereeetnetierieeseeeneeaneraneenns 17
Table 2.4: UNAry OPEratorsc.uueiuneirneiirieetinetierieeteetneerneeaneranerreereseeernaeaens 18
Table 2.5: Element-wise OPEIatorscceurieeiineiineiineeieeiieiieeineeierieeiesnaerneaens 19
Table 2.6: TOKEN SEPATALOLSuuiveiieeiineiieieeiieeiteeie et e et e e e et ereeereeerneerneenneeens 28
Table 2.7: SUDLYPE ..ovniiiiiieie et 33
Table 3.1: Initially KNnown NaMESoivuiiiiiieieiieiie e e e eieeieeineeanns 44
Table 5.1: Operators That Can Be Reboundccooovviiiiiiiiiiniiiice, 192
Table 6.1: Procedure OPerandsccc.eiuneiueinieinniiieeieeieeieeiieeeieeaeerneerneenns 263
Table 7.1: Floating-Point Contagion Rulesc.ccoeiviiiiiiiiiiiiniiiniieceecee, 281
Table 11.1: RandomnessTEStSieuuiiineiiieiiie e 391
Table 14.1: Basic Data TYPEScvvuivniiineiieieeiee et e e e aens 486
Table 14.2: Compound Data TYPESeivviiiniiieiiieiieieiee e 487
Table 14.3: Printer Commandsoeeeuuiiiieiiieiii e 504
Table 16.1: SIeVETEStINPL ..ovuiieiiniii i e aens 594
Table 16.2: sieVETeSt2.MPL ..ovivniiiiiiiie e e 595
Table 16.3: Modified sieveTest2.mplccoivviiiiiieiieie e, 596

Table A.1:

MaAPLE SIUCLUIES 1.uvvniiiiieii i e e e e et e e e e e e e e e e e aeeans 599

XX1

xxii ¢ List of Tables

Preface

Technical computation forms the heart of problem solving in mathematics, engineering,
and science. To help you, Maple™ offers a vast repository of mathematical algorithms
covering a wide range of applications.

At the core of Maple, the symbolic computation engine is second to none in terms of
scalability and performance. Indeed, symbolics was the core focus when Maple was first
conceived at the University of Waterloo in 1980 and to this day Maple continues to be the
benchmark software for symbolic computing.

Together with a large repository of numeric functionality, including industry-standard lib-
raries such as the Intel® Math Kernel Library (MKL), Automatically Tuned Linear Algebra
Software (ATLAS), and the C Linear Algebra PACKage (CLAPACK), as well as a broad
selection of routines from the Numerical Algorithms Group (NAG®) libraries, you can
rely on Maple to support you a across many domains and applications. Using its unique
hybrid technology, Maple integrates the symbolic and numeric worlds to solve diverse
problems more efficiently and with higher accuracy.

The Maple user interface allows you to harness all this computational power by using context-
sensitive menus, task templates, and interactive assistants. The first steps are intuitively
easy to use and quickly lead you into the captivating, creative, and dynamic world of Maple.

As you get more proficient, you will want to explore more deeply and directly access all of
the computational power available to you. You can accomplish this through the Maple
programming language. Combining elements from procedural languages (such as Pascal),
functional languages (such as Lisp) and object-oriented languages (such as Java™), Maple
provides you with an exceptionally simple yet powerful language to write your own programs.
High-level constructs such as map allow you to express in a single statement what would
take ten lines of code in a language like C.

Maple allows you to quickly focus and reliably solve problems with easy access to over
5000 algorithms and functions developed over 30 years of cutting-edge research and devel-
opment.

Maple's user community is now over two million people. Together we have built large col-
lections of Maple worksheets and Maple programs, much of which is freely available on
the web for you to reuse or learn from. The majority of the mathematical algorithms you
find in Maple today are written in the Maple Programming Language. As a Maple user, you
write programs using the same basic tools that the Maple developers themselves use.
Moreover you can easily view most of the code in the Maple library and you can even extend
the Maple system, tying your programs in with existing functionality.

Xx1i1

xxiv ¢ Preface

This guide will lead you from your first steps in Maple programming to writing sophisticated
routines and packages, allowing you to tackle problems in mathematics, engineering, and

science effectively and efficiently. You will quickly progress towards proficiency in Maple
programming, allowing you to harness the full power of Maple.

Have fun!

Audience

This guide provides information for users who are new to Maple programming, as well as
experienced Maple programmers. Before reading this guide, you should be familiar with
the following.

* The Maple help system
* How to use Maple interactively

* The Maple User Manual

Maple User Interfaces

You can access Maple functionality through several user interfaces. Maple interfaces accept
user input, communicate with the Maple computational engine, and display solutions to
mathematical problems.

The Standard Interface

The standard interface facilitates the performance of computations and lets you manipulate
mathematical expressions. It also provides layout and document processing features that
you can use to annotate your problem-solving process. The standard interface will be the
focus of this guide.

To display the standard interface, double-click your Maple desktop icon (Windows® and
Macintosh®) or run the xmaple command (UNIX®).

Other Maple Interfaces

* MapleNet™ lets you publish your interactive Maple documents on the web. Users with
an Internet connection can then view and manipulate your published documents in a web
browser. MapleNet also provides a web service interface that allows connected applications
to pass data to Maple, run a program, and retrieve results. It also lets you create custom
JavaServer™ Pages (JSP) applications and Java applets. For more information about
MapleNet, see MapleNet (page 468).

* OpenMaple™ is the Maple application programming interface (API) that lets you build
custom user interfaces or embed Maple in an existing application. OpenMaple can be

Preface ¢ xxv

used with a variety of languages including C, C++, Java, Fortran, Visual Basic®, and
C#. For more information about OpenMaple, see OpenMaple (page 470).

* The Maple command-line interface is a console-based application that can be used for
batch processing Maple command files. For more information, see 7The Maple
Command-line Interface (page 481).

* Maplet™ applications are custom interfaces that are created using the Maple programming
language. For more information, see Programming Interactive Elements (page 451).

For more information about the Maple user interfaces, refer to the Maple User Manual or
the versions help page.

Programming in the Standard Interface

Most of the time, you will enter Maple code directly in a worksheet or document. The
standard interface also provides other functionality for entering Maple code. For example,
you can enter your code in a startup code region if you want to run certain commands or
procedures automatically when a Maple document is opened. You can also enter your code
in a code edit region if you want to keep a set of Maple commands or procedures in a con-
fined region within your document. For more information, refer to the worksheet,document-
ing,startupcode and CodeEditRegion help pages.

You can also include your code in an external text file to be read by a worksheet or document,
or batch processed. For more information, refer to the file help page.

Document Mode and Worksheet Mode

Two modes of interactive operation are available in the standard interface: document mode
and worksheet mode.

In document mode, you enter mathematical expressions within document blocks; no Maple
input prompt (>) or execution group boundaries are displayed in the document. You can
use this mode to create professional reports that combine text and typeset math with plots,
images, and other interactive components.

In worksheet mode, you enter mathematical expressions at input prompts, which are displayed
at the start of each input line in a Maple document. When you type an expression and press
Enter, the expression is evaluated and a new input prompt is displayed in the next line. In
both modes, the default format for entering mathematical text is 2-D math notation.

Both modes are equally suitable for creating and running programs in Maple. Select the
mode that suits your preferences and tasks. For more information about both modes, refer
to the worksheet,help,documentsvsworksheets help page.

xxvi ¢ Preface

1-D and 2-D Math Notation

When programming in Maple, you must also consider whether to use 2-D math notation or
1-D math notation. In 2-D math notation, typeset mathematical text is displayed in black
italicized characters.

Jsin(x) dx

In 1-D math notation (or Maple input), mathematical text is displayed in a red fixed-width
font that is not typeset.

> int(sin(x) ,x):

1-D math notation can be used in external text files to write Maple code that can be read
by a worksheet or batch processed. You can enter individual statements in 1-D math notation
or configure Maple to display mathematical input in 1-D math by default in all future Maple
sessions.

Note: While 2-D math is the recommended format for mathematical text and equations
and can be used for short command sequences and procedures, it is generally not recom-
mended for long programs and package definitions.

Most input in this guide is shown in 1-D math notation. To clearly distinguish commands
and input, this guide uses a leading prompt character (>) and all input is entered in worksheet
mode.

For more information on starting Maple, toggling between 1-D and 2-D math notation, and
managing your files, refer to the Maple User Manual or enter ?managing at the Maple
prompt.

Web Resources

* Maplesoft Application Center: The Application Center provides thousands of complete
applications that you can download and use in Maple. For more information, visit

http://www.maplesoft.com/applications.

* MaplePrimes™: MaplePrimes is an online forum where you can search for tips and
techniques, read blogs, and discuss your work in Maple with an active community. For
more information, visit http://www.mapleprimes.com.

* Maplesoft Online Help: Documentation included with Maple is also posted online. The
web version offers the latest updates, Google™-based searching, and an easy way to
provide feedback on help documentation. For more information, visit,

http://www.maplesoft.com/support/help.

http://www.maplesoft.com/applications
http://www.mapleprimes.com
http://www.maplesoft.com/support/help

Preface * xxvii

* Teacher Resource Center: The Teacher Resource Center provides course content, lecture
notes, demonstrations, and other resources to help teachers incorporate Maple in their
classrooms. For more information, visit http://www.maplesoft.com/TeacherResource.

» Student Resource Center: The Student Resource Center provides online forums, training
videos, and other resources to help students with their work in Maple. For more inform-

ation, visit http://www.maplesoft.com/studentcenter.
For additional resources, visit http://www.maplesoft.com.

Conventions

This guide uses the following typographical conventions.

* bold font - Maple command, package name, option name, dialog box, menu, or text field
* italics - new or important concept

» Note - additional information that is relevant to a concept or section

* Important - information that must be read and followed

Customer Feedback

Maplesoft welcomes your feedback. For suggestions and comments related to this and other
manuals, contact doc@maplesoft.com.

http://www.maplesoft.com/TeacherResource
http://www.maplesoft.com/studentcenter
http://www.maplesoft.com

xxvili ¢ Preface

1 Introduction to Programming in Maple

Maple provides an interactive problem-solving environment, complete with procedures for
performing symbolic, numeric, and graphical computations. At the core of the Maple com-
puter algebra system is a powerful programming language, upon which the Maple libraries
of mathematical commands are built.

1.1 In This Chapter

» Components of the Maple software
* Maple statements

* Procedures and other essential elements of the Maple language

1.2 The Maple Software

The Maple software consists of two distinct parts.
* The user interface

* The computation engine

The User Interface

You can use the Maple user interface to enter, manipulate, and analyze mathematical ex-
pressions and commands. The user interface communicates with the Maple computation
engine to solve mathematical problems and display their solutions.

For more information about the Maple user interface, refer to the Maple User Manual.

The Computation Engine

The Maple computation engine is the command processor, which consists of two parts: the
kernel and math library.

The kernel is the core of the Maple computation engine. It contains the essential facilities
required to run and interpret Maple programs, and manage data structures. In this guide,
the kernel commands are referred to as built-in commands.

The Maple kernel also consists of kernel extensions, which are collections of external
compiled libraries that are included in Maple to provide low-level programming functionality.
These libraries include Basic Linear Algebra Subprograms (BLAS), GNU Multiple Precision
(GMP), the NAG® C Library, and the C Linear Algebra PACKage (CLAPACK).

The math library contains most of the Maple commands. It includes functionality for nu-
merous mathematical domains, including calculus, linear algebra, number theory, and
combinatorics. Also, it contains commands for numerous other tasks, including importing

2 « 1 Introduction to Programming in Maple

data into Maple, XML processing, graphics, and translating Maple code to other programming
languages.

All library commands are implemented in the high-level Maple programming language, so
they can be viewed and modified by users. By learning the Maple programming language,
you can create custom programs and packages, and extend the Maple library.

1.3 Maple Statements

There are many types of valid statements. Examples include statements that request help
on a particular topic, display a text string, perform an arithmetic operation, use a Maple
library command, or define a procedure.

Statements in 1-D notation require a trailing semicolon (;) or colon (:). If you enter a state-
ment with a trailing semicolon, for most statements, the result is displayed. If you enter a
statement with a trailing colon, the result is computed but not displayed.

>2 + 3;
5 (1.1)
>2 + 3:

For more information about statements in Maple, see Maple Statements (page 169).

Getting Help

To view a help page for a particular topic, enter a question mark (?) followed by the corres-
ponding topic name. For example, ?procedure displays a help page that describes how to
write a Maple procedure.

For more information about getting help in Maple, refer to the help and HelpGuide help
pages.

This type of Maple statement does not have a trailing colon or semicolon.
Displaying a Text String

The following statement returns a string. The text that forms the string is enclosed in double
quotes, and the result (the string itself) is displayed because the statement has a trailing
semicolon.

> "Hello World";

"Hello World" (1.2)

Normally, you would create a string as part of another statement, such as an assignment or
an argument for a procedure.

1.3 Maple Statements * 3

For more information about strings in Maple, see Maple Language Elements (page 15).

Performing an Arithmetic Operation

The arithmetic operators in Maple are + (addition), - (subtraction), * (multiplication), / (di-
vision), and ” (exponentiation). A statement can be an arithmetic operation that contains
any combination of these operators. The standard rules of precedence apply.

> (44%3+13)~2/116;

725
— 1.3
4 (1.3)

Maple computes this result as an exact rational number.

Assigning to a Name

By naming a calculated result or complicated expression, you can reference it. To assign
to a name, use the assignment operator, :=.

> a := 103993/33102;

_ 103993 (14)
33102 :
>2 * a;
103993 15)
16551 '

For more information about names and assignment, see Maple Language Elements (page 15).

Using Maple Library Commands

After a value is assigned to a name, for example, the value assigned previously to a, you
can use the name as if it were the assigned object. For example, you can use the Maple library
command evalfto compute a floating-point (decimal) approximation to 103993/33102 divided
by 2 by entering the following statement.

> evalf (a/2);

1.570796326 (1.6)

You can use the Maple library of commands, introduced in The Computation
Engine (page 1), for many purposes. For example, you can find the derivative of an ex-
pression by using the diff command.

4 < 1 Introduction to Programming in Maple

> diff(x*2 + x + 1/x, x);

2x—|—1—L 1.7)

X

Note the difference between the names used in these two examples. In the first example, a
is a variable with an assigned value. In the second example, x is a symbol with no assigned
value. Maple can represent and compute with symbolic expressions.

For more information about the Maple library commands, refer to the Maple User Manual
or the help system.

1.4 Procedures

This section introduces the concept of procedures in Maple. For more information about
procedures, see Procedures (page 195).

Defining a Simple Procedure

A Maple procedure (a type of program) is a group of statements that are processed together.
The easiest way to create a Maple procedure is to enclose a sequence of commands, which
can be used to perform a computation interactively, between the proc(...) and end proc
statements.

Entering a Procedure Definition

The following procedure generates the string "Hello World". Enter this procedure in a Maple
session by entering its definition on one line.

> hello := proc() return "Hello World"; end proc;
hello := proc() return "Hello World" end proc (1.8)

You can also enter a procedure or any Maple statement on multiple lines. To move the
cursor to the next line as you are entering a multiline statement, hold the Shift key and press
Enter at the end of each line.

Note: This is necessary in the interactive worksheet environment only. If you enter code in
a code edit region, you can simply type the text and press Enter to move the cursor to next
line. For more information on code edit regions, refer to the CodeEditRegion help page.

For more information about using Shift+Enter, see Unexpected End of Statement (page 12).

You can indent lines in a procedure by using the spacebar. After you enter the last line, end
proc;, press Enter.

1.4 Procedures * 5

> hello := proc()
return "Hello World";
end proc;

hello := proc() return "Hello World" end proc (1.9)

To run this procedure, enter its name followed by a set of parentheses and a semicolon:

> hello();

"Hello World" (1.10)

Procedures can also accept arguments. Consider the following example.

> half := proc(x)
evalf (x/2);
end proc;

half = proc(x) evalf(1/2*x) end proc (1.11)

This procedure requires one input, x. The procedure computes the approximation of the
value of x divided by 2. When a return statement is not specified, a Maple procedure returns
the result of the last statement that was run. Since evalf(x/2) is the last calculation performed
in the procedure half (in fact, it is the only calculation), the result of that calculation is re-
turned.

The procedure is named half by using the := notation in the same way that you would assign
any other object to a name. After you have named a procedure, you can use it as a command
in the current Maple session. The syntax to run your procedure is the same syntax used to
run a Maple library command: enter the procedure name followed by the input to the pro-
cedure enclosed in parentheses.

> half(2/3);

0.3333333333 (1.12)
> half(a);

1.570796326 (1.13)
> half(1l) + half(2);

1.500000000 (1.14)

The basic syntax for a procedure is given below.

proc(P)

end proc

6 < 1 Introduction to Programming in Maple

The letter P indicates the parameters. The body of the procedure is between the proc and
end proc keywords.

Consider the following two statements, which calculate the angle in a right triangle given
the lengths of two sides.

> theta := arcsin (opposite/hypotenuse) ;
. opposite
0= arcsm[L (1.15)
hypotenuse

> evalf (180/Pi*theta) ;

57.29577950 arcsin(M) (1.16)
hypotenuse

The following example shows a procedure that corresponds to these statements. The proced-
ure definition contains two input parameters for the length of two sides of a right triangle.
> GetAngle := proc(opposite, hypotenuse)
local theta;
theta := arcsin(opposite/hypotenuse) ;
evalf (180/Pi*theta) ;
end proc;

GetAngle = proc(opposite, hypotenuse)
local theta;

theta := arcsin(opposite | hypotenuse); (1.17)
evalf(180*theta /Pi)
end proc

When you run the procedure definition, the output shown is the Maple interpretation of this
procedure definition. Examine it carefully and note the following characteristics.

* The name of this procedure (program) is GetAngle. Note that Maple is case-sensitive,
so GetAngle is distinct from getangle.

* The procedure definition starts with proc(opposite, hypotenuse). The two names in
parentheses indicate the parameters, or inputs, of the procedure.

* Semicolons or colons separate the individual commands of the procedure.

* The local theta; statement declares theta as a local variable. A local variable has meaning
in the procedure definition only. Therefore, if you were to declare another variable called
theta outside of the procedure, that variable would be different from the local variable
theta declared in the procedure and you could use theta as a variable name outside of
the procedure GetAngle without conflict.

1.4 Procedures * 7

For more information about local variables, see Variables in Procedures (page 217).

* Piisapredefined variable in Maple. Two predefined functions, evalf and arcsin, are used
in the calculation.

* The end proc keywords and a colon or semicolon indicate the end of the procedure.

* As you enter the procedure, the commands of the procedure do not display output. The
procedure definition is displayed as output only after you complete it with end proc and
a semicolon.

» There is no explicit return statement, so the result of calling the procedure is the result
of the last calculation.

» The procedure definition that displays in the output is equivalent to, but not identical to,
the procedure definition you enter. When Maple parses the statement, the commands of
the procedure may be simplified.

The procedure definition syntax is flexible. You can do the following:

» Enter each statement on one or more lines

» Enter multiple statements on one line, provided they are separated by colons or semicolons
* Place extra semicolons between statements

* Omit the semicolon (or colon) from the statement preceding end proc

To hide the output resulting from a complicated procedure definition, use a colon instead
of a semicolon at the end of the definition.

Adding Comments to a Procedure

Consider the following example.

(* this procedure computes an interior angle of a right
triangle given the length of the side opposite the angle, and
the length of the hypotenuse.
*)
GetAngle := proc(opposite, hypotenuse)
local theta;
theta := arcsin(opposite/hypotenuse);
convert the angle from radians to degrees
evalf (180/Pi*theta);

end proc:

You can include single line comments anywhere in the procedure. They begin with a pound
character (#). You can also enter multiline comments between (* and *) symbols as shown
in the example above.

8 < 1 Introduction to Programming in Maple

Note: Multiline comments cannot be entered in 2-D math notation. As an alternative, in a
Maple document, you can enter comments as text by adding a paragraph above or below
the Maple statement.

Calling a Procedure

Running a procedure is referred to as an invocation or a procedure call. When you invoke
a procedure, Maple runs the statements that form the procedure body one at a time. The
result of the last computed statement within the procedure is returned as the value of the
procedure call.

For example, to run the procedure GetAngle--that is, to cause the statements that form the
procedure to be run in sequence--enter its name followed by parentheses enclosing the inputs,
in this case, two numbers delimited (separated) by commas (,). End the statement with a
semicolon.

> GetAngle (4,5);
53.13010234 (1.18)

Only the result of the last calculation performed within the procedure GetAngle is returned-
-the result of evalf(180/Pi*theta). The assignment theta:=arcsin(opposite/hypotenuse);
is performed, but the statement result is not displayed.

Maple Library Commands, Built-ln Commands, and User-Defined
Procedures

Maple comes with a large collection of commands and packages. Before writing custom
procedures, refer to the Maple help system to find out which commands are available. You
can easily include complex tasks in your user-defined procedures by using existing Maple
commands instead of writing new code.

Maple commands are implemented in one of two formats: those written and compiled in
an external language such as C and those written in the Maple programming language.

The commands that are compiled as part of the Maple kernel are referred to as built-in
commands. These are widely used in computations, and are fundamental for implementing
other Maple commands.

For more information about built-in kernel commands, see The Computation
Engine (page 1) and The builtin Option (page 211).

The commands in the Maple library are written in the Maple programming language. These
commands exist as individual commands or as packages of commands. They are accessed
and interpreted by the Maple system as required. The code for the library commands and
the definitions of user-defined procedures can be viewed and modified. However, before

1.4 Procedures ¢ 9

exploring library commands, it is important that you learn about evaluation rules to under-
stand the code.

Full Evaluation and Last Name Evaluation

For most expressions assigned to a name, such as e defined with the following statement,
you can obtain its value by entering its name.

> restart;

> e = 3;

e:=3 (1.19)

3 (1.20)

This is called full evaluation--each name in the expression is fully evaluated to the last as-
signed expression in any chain of assignments. The following statements further illustrate
how full evaluation works.

> c = b;
c=D>b (1.21)
>b := a;
b:=a (1.22)
>a = 1;
a=1 (1.23)
> c;
1 (1.24)

This group of statements creates the chain of assignments. c > b — a — 1, and ¢ fully
evaluates to 1.

If you try this approach with a procedure, Maple displays only the name of the procedure

instead of its value (the procedure definition). For example, in the previous section, GetAngle
is defined as a procedure. If you try to view the body of procedure GetAngle by referring

to it by name, the procedure definition is not displayed.

> GetAngle;

GetAngle (1.25)

10 + 1 Introduction to Programming in Maple

This model of evaluation is called last name evaluation and it hides the procedure details.
There are several reasons for this approach relating to advanced evaluation topics. The most
important concept to understand is that you will only see the name of a procedure when you
reference it by itself or when it is returned unevaluated; you will not see the full procedure
definition. To obtain the value of the name GetAngle, use the eval command, which forces
full evaluation.

Last name evaluation applies to procedures, tables, and modules in Maple. For more inform-
ation, refer to the last name_eval help page.

> eval (GetAngle) ;

GetAngle (1.26)

Viewing Procedure Definitions and Maple Library Code

You can learn about programming in Maple by studying the procedure definitions of Maple
library commands. To print the body of Maple library commands, set the Maple interface
variable verboseproc to 2, and then use the print command.

For example, to view the procedure definition for the Maple least common multiple command,
lem, enter the following statements.

For more information about interface variables, refer to the interface help page.
> interface (verboseproc = 2):
> print(lcm) ;

proc(a, b) ... end proc (1.27)

Because the built-in kernel commands are compiled in machine code, and not written in the
Maple language, you cannot view their definitions. If you print the definition of a built-in
procedure, you will see that the procedure has only an option builtin statement and no
visible body.

> print(add) ;

proc() option builtin = add; end proc (1.28)
1.5 Interrupting Computations and Clearing the Internal
Memory

Interrupting a Maple Computation

To stop a computation, for example, a lengthy calculation or infinite loop, use one of the
following three methods.

1.6 Avoiding Common Problems < 11

Note: Maple may not always respond immediately to an interrupt request if it is performing
a complex computation. You may need to wait a few seconds before the computation stops.

* Click the stop icon in the toolbar (in worksheet versions).

* Click the interrupt icon % in the toolbar (in worksheet versions). See Figure 1.1.

DEBESE Y@ S¢ TI> = e = M1 OFe & B 2

Figure 1.1: Maple Toolbar

Note: For more information on the toolbar icons, refer to the worksheet/reference/Work-
sheetToolbar help page.

* Hold the Ctrl key and press the C key (in UNIX and Windows command-line versions).

* Hold the Command key and press the period key (.) (in Macintosh command-line and
worksheet versions).

To perform a hard interrupt, which stops the computation and exits the Maple session, in
the Windows command-line interface, hold the Ctrl key and press the Break key.

Clearing the Maple Internal Memory

Clear the internal memory during a Maple session by entering the restart command or
clicking the restart icon @+ in the worksheet toolbar. When you enter this command, the
Maple session returns to its startup state, that is, all identifiers (including variables and
procedures) are reset to their initial values.

> restart;

For more information on clearing the Maple internal memory and the restart command,
refer to the restart help page. For more information on the toolbar icons, refer to the work-
sheet/reference/WorksheetToolbar help page.

Maple tracks the use of permanent and temporary objects. Its internal garbage collection
facility places memory that is no longer in use on free lists so it can be used again efficiently
as needed. For more information on garbage collection and the gc command, see Garbage
Collection (page 592).

1.6 Avoiding Common Problems

This section provides a list of common mistakes, examples, and hints that will help you
understand and avoid common errors. Use this section to study the errors that you may en-
counter when entering the examples from this chapter in a Maple session.

12+ 1 Introduction to Programming in Maple

Unexpected End of Statement

Most valid statements in Maple must end in either a colon or a semicolon. An error message
is displayed if you press Enter in an input region that is incomplete.

Tip: You can use the parse command to find errors in statements, and the Maple debugger
to find errors in programs. For more information on the debugger, see The Maple Debugger:
A Tutorial Example (page 547) or refer to the parse and debugger help pages.

If you press Enter to move the cursor to a new line when you are entering a procedure
definition on multiple lines, the following error is displayed.

> p:=proc()

To prevent this error message from displaying as you enter a procedure definition, hold the
Shift key and press Enter at the end of each line, instead of pressing only Enter.

> p := proc()
"Hello World";
end proc;

p := proc() "Hello World" end proc (1.29)

In 1-D math notation, if you do not enter a trailing semicolon or colon, Maple inserts a
semicolon and displays the following warning message.

>1 + 2
Maple also inserts a semicolon after end proc in procedure definitions.

> p := proc()
"Hello World";
end proc

proc() "Hello World" end proc (1.30)

Missing Operator

The most common error of this type is omitting the multiplication operator.
> 2 a + b;

You can avoid this error by entering an asterisk (¥) to indicate multiplication.
> 2*a + b;

2a+b (1.31)

Implicit multiplication, which can be used in 2-D math input, is not valid syntax in 1-D
math input.

1.6 Avoiding Common Problems < 13

Invalid, Wrong Number or Type of Arguments

An error is displayed if the argument(s) to a Maple library command are incorrect or missing.
> evalf () ;

Error, invalid input: evalf expects 1 or 2 arguments, but received 0

> solve (y=3*x+4, 5);

Error, (in solve) a constant is invalid as a variable, 5

> cos(x, y);

Error, (in cos) expecting 1 argument, got 2

If such an error occurs, check the appropriate help page for the correct syntax. Enter ?top-
ic_name at the Maple prompt.

The same type of error message is displayed if you call a user-defined procedure, such as
GetAngle, with the wrong number of the arguments.

Unbalanced Parentheses

In complicated expressions or nested commands, it is easy to omit a closing parenthesis.
> {[1,01, [0,1};
In a valid statement, each (, {, and [requires a matching), }, and], respectively.
> {[1,0], [0,11};
{{0,1],[1,0]} (132)

Assignment Versus Equality

When you enter statements in a Maple session, it is important to understand the difference
between equality (using =) and assignment (using :=).

The equal sign, =, is used in equality tests or to create equations. Creating an equation is a
valid Maple statement.

> x = y*"2+43;
X=y +3 (1.33)

> solve (%,y);

> x;

X (1.34)

14 + 1 Introduction to Programming in Maple

In the example above, % is a special name that stores the value of the last statement. The
solve command is used to isolate y in the equation defined in the first statement. The first
statement is not an assignment; X remains a symbol with no assigned value.

You can use the assignment operator, :=, to assign x the value y*2+3. The assignment op-
erator assigns the value of the right-hand side to the left-hand side. After an assignment is
made, the left-hand side can be used in place of the value of the right-hand side. The left-

hand side cannot be a number; it must be a name, indexed name, function call, or sequence
of these values.

> x = y*"2+3;

X = yZ +3 (1.35)

> solve (x,y);

1/3,-1/3 (1.36)

)2 +3 (1.37)

For more information about equations and Boolean testing, see Boolean and Relational
Expressions (page 86) or refer to the evalb help page. For more information about names
and assignment, see Names (page 42) and Assignments (page 170).

1.7 Exercises

1. Assign the integers 12321, 23432, and 34543 to the names a, b, and c. Use these names
to find the sum and difference of each pair of numbers.

2. Write two procedures. The first requires two inputs and finds their sum. The second re-
quires two inputs and finds their product. Use these procedures to add and multiply pairs
of numbers. How could you use these procedures to add and multiply three numbers?

3. Display your procedure definitions. Are they identical to the code you entered to write
them?

2 Maple Language Elements

Before programming in Maple, it is important to learn the properties and roles of the basic
elements of the Maple language. This chapter introduces some of the main concepts, which
will be described in more detail later in this guide.

2.1 In This Chapter

 Basic elements of the Maple language: the character set and tokens

* Maple tokens: reserved words, operators, names, strings, and natural numbers; function
types

 Using special characters

* Maple data types related to the tokens

2.2 Character Set

The Maple character set consists of letters, digits, and special characters. These include 26
lowercase letters, 26 uppercase letters, and 10 decimal digits.

abcdefghijklmnopgrstuvwzxyz

ABCDEFGHIJKLMNOPQRSTUVWIXYZ

There are also 33 special characters, which are listed in Table 2.1. These characters, or
combinations of these characters, have special meanings in the Maple language.

Table 2.1: Special Characters

Character | Meaning Character | Meaning
blank (left parenthesis
; semicolon) right parenthesis
colon [left bracket
+ plus] right bracket
- minus { left brace
* asterisk } right brace
/ slash ’ left single quote (back quote)
~ caret ' right single quote (apostrophe)
! exclamation " double quote
= equal | vertical bar
< less than & ampersand
> greater than _ underscore

15

16 + 2 Maple Language Elements

Character | Meaning Character | Meaning
@ at sign % percent
$ dollar \ backslash
period # pound sign (sharp)
s comma ? question mark
~ tilde

These are the only characters used in the Maple language. However, all character types can
be used in names and strings, including international characters. For more information on
how to create names using international characters, see Names (page 20).

Note: When you manipulate a string or determine the length of a string, non-ASCII and
international characters may be counted as more than one byte.

Many string manipulation commands interpret multibyte characters as multiple characters.

> s := "\xC3\xBC";
= "{i" @.1)
> convert (s, bytes);

[195, 188] 22)

2.3 Tokens

The Maple language combines characters into tokens. The set of tokens consists of reserved
words (also called keywords), programming-language operators, names, strings, and natural
integers.

Reserved Words

Maple keywords are reserved words that have special meanings. Therefore, you cannot
change them or use them as variables in procedures. The keywords are listed in Table 2.2.
You can find information about specific keywords in later chapters of this guide or the help
system.

For more information about reserved words in Maple, refer to the keyword help page.

Table 2.2: Reserved Keywords

Keywords Purpose

break, next loop control

if, then, elif, else if statement

for, from, in, by, to, while, do for and while loops

2.3 Tokens

17

Keywords Purpose
proc, local, global, option, error, return, options, procedures
description

export, module, use modules

end

ends structures

assuming

assume facility

try, catch, finally

exception handling

read, save

read and save statements

quit, done, stop

ending Maple

union, minus, intersect, subset

set operators

and, or, not, xor

Boolean operators

implies

implication operator

mod

modulus operator

Programming-Language Operators

There are two main types of Maple language operators: unary and binary. Simply put, a
unary operator acts on one operand, as in -a, where the operator - is applied to a. A binary
operator acts on two operands, as in a+b, where + is the operator and the operands are a

and b.

The Maple binary and unary operators, and their meanings, are listed in Table 2.3 and Table
2.4. For more information about these operators, refer to the operators,binary and operat-

ors,unary help topics.

For information about the order of precedence of programming-language operators, refer

to the operators/precedence help page.

Table 2.3: Binary Operators

Operator Meaning Operator Meaning

+ addition < less than

- subtraction <= less or equal

* multiplication > greater than

/ division >= greater or equal

" exponentiation < not equal

$ sequence operator |= equal or equation

@ composition union set union

@@ repeated composition |minus set difference

&string neutral operator intersect set intersection

R expression separator type declaration and
pattern binding

18 + 2 Maple Language Elements

Operator Meaning Operator Meaning

I concatenation in membership
non-commutative and logical and
multiplication

> arrow operator or logical or
ellipsis xor exclusive or

mod modulo implies implication

= assignment subset subset

Table 2.4: Unary Operators

Operator Meaning

+ unary plus (prefix)

- unary minus (prefix)

! factorial (postfix)

$ sequence operator (prefix)
not logical not (prefix)
&string neutral operator (prefix)

decimal point (prefix or postfix)

Most of the unary and binary operators can also be used in element-wise form with objects
that have multiple elements. To perform an element-wise operation, add a trailing tilde (~)
after an operator that has an element-wise form. An element-wise operation allows you to
apply an operation to the elements of a list, set, table, Array, Matrix, or Vector. For example,
compare Matrix multiplication with element-wise multiplication of paired entries in a
Matrix.

><1,2;3,4> . <2,2:2,2>;

6 6
(2.3)
14 14
><1,2;3,4> .~ <2,2;2,2>;
2 4
(2.4)
6 8

The Maple element-wise operators are listed in Table 2.5. For more information about these
operators, refer to the operators,elementwise help page.

2.3 Tokens

19

Table 2.5: Element-wise Operators

Element-wise Meaning Element-wise Meaning

Operator Operator

+~ addition or unary plus | <~ less than

-~ subtraction or unary |<=~ less or equal
minus

* multiplication >~ greater than

/~ division >=~ greater or equal

A~ exponentiation <~ not equal

I~ factorial (unary =~ equal or equation
postfix)

@~ composition union~ set union

@@~ repeated composition | minus~ set difference

&name ~ neutral operator intersect~ set intersection

&name ~ neutral operator in~ membership
(unary prefix)

subset~ subset or~ logical or

~ non-commutative and~ logical and
multiplication

|~ concatenation Xor~ exclusive or

mod~ modulo implies~ implication

funct~ element-wise not~ logical not (unary

prefix)

Also, three special nullary operators (also called ditto operators) can be used in interactive

sessions. These are special Maple names that can be used to refer to previously computed
non-NULL expressions.

o°

last expression

oo

% second-last expression

o

%% third-last expression

While they can be used for simple computations, the ditto operators should be avoided when
writing programs. For results that need to be used in subsequent expressions, assign values
to variables instead.

Note: In a worksheet, the ditto operators do not necessarily reference the results of the
lines located above the execution groups in which they are used. They reference the results
of the most recently performed computations in the Maple session, regardless of the exe-
cution group or document in which they are located. Also, in terms of evaluation, the
ditto operators are treated differently than local variables in a procedure. They are fully
evaluated, which may require more processing than one-level evaluation of local variables.
For more information about local variables, see Local Variables (page 218).

20 + 2 Maple Language Elements

For more information about the ditto operators, refer to the ditto help page.

Names

A name in Maple is a sequence of one or more characters that uniquely identifies a command,
file, variable, or other entity.

The simplest instance of a name consists of a letter followed by a sequence of letters, digits,
and underscores.

> My Name 1;
My_Name_1 (2.5

If you need to create a name that includes blank spaces or international characters, use left
single quotes ().

> "A quoted name;

A quoted name (2.6)
> 1. A silly name’;

1. A silly name 2.7

In general any name that can be formed without left single quotes is identical to the same
name with quotes. For example, x and "x" refer to the same name x. Left single quotes are
similar to double quotes in that double quotes are used to build strings while left single
quotes are used to build names.

Note that the reverse is not true, some names can be formed with left single quotes that are
not identical to expressions typed in without quotes. One example is the name “2°. By putting
quotes around the 2 here, a name is formed instead of a number. Another example is a
quoted keyword, like “module’. To test if an expression is of type module, check type(ex-
pr, module"). Without the quotes, the Maple parser determines that this is the start of a
module definition and the parser will flag a syntax error.

Characters in Maple are case-sensitive. Therefore, for example, the name Apple is different
from the name apple.

> Apple 4;

Apple := 4 (2.8)

I
(8]

> apple :

apple := 5 (2.9)

2.4 Natural Integers * 21

> Apple + apple;
9 (2.10)

Other Maple names are used for

» mathematical functions such as sin and cos

* Maple commands such as expand or simplify

* type names such as integer or list

* symbols, for example, x and y in the expression x+y

* variables, or names with assigned values

For example, in the first statement below, y is a name that does not have a value. In the
second statement, the variable x has the value 3.

> 2*y - 1;
2y—1 (2.11)

>x = 3; x*2 + 1;

10 (2.12)

You can create an empty name, which has no characters in its spelling.
> type("7, 'name');

true (2.13)

Early versions of Maple did not have separate types for names and strings. As a result, many
commands for string processing will also accept names and process their characters the
same way. It is generally better to use strings for such processing as strings can never have
assigned values.

For more more information about names, see Names (page 42).

2.4 Natural Integers

A natural integer is a sequence of one or more decimal digits.

> 00003141592653589793238462643;

3141592653589793238462643 (2.14)

For more information about integers, see Integers (page 53) and Numeric Types in
Maple (page 267).

22 + 2 Maple Language Elements

2.5 Strings

A string is a sequence of characters that evaluates to itself. To create a string, enclose any
sequence of characters in double quotes.

> "This is a string";
"This is a string" (2.15)

You cannot assign a value to a string.

> "hello" :=5;

In the following sections, strings and string operations are described. For information on
the StringTools package, refer to the StringTools help page.

Length of a String

Use the length command to determine the number of bytes in a string.

> length("What is the length of this string?");

34 (2.16)

All of the characters between, but excluding, the double quotes are counted. Each blank
space is counted as one character. Non-ASCII characters may be counted as more than one
byte.

The maximum string length is system-dependent and ranges from about 268 million bytes
on 32-bit systems to more than 34 billion bytes on 64-bit systems.

Substrings

You can extract a substring of a string by using a subscripted integer range (also called a
selection operation).

> S := "This is a string";
S := "This is a string" (2.17)
> S[6];
" (2.18)
> S[6..9];

"is a" (2.19)

2.5 Strings « 23

Negative numbers in the range count backwards from the end of the string. -2 is the second
last character in the string. Either range endpoint can also be left off to indicate from the
beginning, or to the end.

> s[-6..-11;
"string" (2.20)
> s[1l..]1;

"string" (2.21)

Searching a String

To perform case-sensitive and case-insensitive string searching, use the SearchText and
searchtext commands, respectively.

SearchText (pattern, exprString, range);

searchtext (pattern, exprString, range);

The SearchText command searches for exact matches of pattern in exprString. The
searchtext command performs the same search, but it is case-insensitive. If pattern is found,
Maple returns an integer indicating the position of the first character in pattern in ex-
prString. If the pattern is not found in exprString, 0 is returned.

> SearchText("my s", "This is my string.");
9 (2.22)
> searchtext("My S", "This is my string.");

9 (2.23)

The optional range restricts the search to the specified range. It is equivalent to performing
a search on a substring, and it is useful when the pattern occurs more than once in the string.

> SearchText("is", "This is my string.", 4..-1);
3 (2.24)
String Concatenation

Strings can be formed through concatenation by using the cat command.

cat (sequence)

Here, the sequence parameter can contain any number of expressions that are separated by
commas.

24 + 2 Maple Language Elements

The cat command is commonly used to concatenate strings with names and integers, and
the result returned has the type (name or string) of the first argument to cat.

>i :=5;
i=5 (2.25)
> cat("The value of i is ", i, ".");
"The value of iis 5." (2.26)
> filename := cat(kernelopts(mapledir), kernelopts(dirsep), "1lib"
)i
"C:\Program Files\Maple 16\lib" (2.27)

Mutability of Strings

Strings are not mutable objects in Maple. This means that appending text to a string is not
done in-place, but involves allocating new storage for the result and copying the original
text, plus the appended text, into that new space. This is typically not an issue unless you
are incrementally processing large amounts of text. In the latter case, the StringBuffer
command may be useful.

> with(StringTools):

> s := StringBuffer();
gi="" (2.28)
> s:-append("The quick brown fox"):
> s:-newline () :
> s:-append (" jumped over the lazy dog"):
> s:-value() ;

"The quick brown fox

(2.29)
mped over the lazy dog"

For more information, refer to the StringBuffer help page.

Special Characters in Strings

To display the double quote character in a string, enter a backslash character (\) followed
by a double quote (") where you want the double quote character to appear. For more in-
formation, refer to the backslash help page.

2.5 Strings « 25

> n a\ llb " ;

uanbll (230)
Similarly, to display a backslash character as one of the characters in a string, enter two
consecutive backslash characters, \\. You must escape the backslash in this manner because

backslash is itself a special character. For more information, see Blank Spaces, New Lines,
Comments, and Continuation (page 27).

> "a\\b";

"a\b" (2.31)
The special backslash character mentioned above counts as only one character, as demon-
strated by using the length command.

> length((2.31));

3 (2.32)

Doubling up backslashes is most notable when entering full path names in Maple. For this
situation it is easier to use forward slash instead. Forward slash is recognized as a directory
separator on all platforms including Windows.

Parsing Strings

The parse command accepts any Maple string and parses the string as if it had been entered
or read from a file. This is especially useful when you want to interpret commands typed
into text-components inside your Maple document.

parse(exprString, option);

Without specifying extra options, the string should contain exactly one Maple expression.
The expression is parsed and returned unevaluated.

> parse("a+b") ;

a+b (2.33)

> parse("a+b;");
a+b (2.34)

If the string is syntactically incorrect, the parse command displays an error message of the
form incorrect syntax in parse: ... (number).

The number indicates the offset in characters, counted from the beginning of the string, at
which the syntax error was detected.

26 + 2 Maple Language Elements

> parse ("a++b") ;

Error, incorrect syntax in parse: "+ unexpected (near 3rd character
of parsed string)

If the option statement is specified, the string is parsed and evaluated, and then the result
is returned.

> parse("sin(Pi)") ;
sin(n) (2.35)
> parse("sin(Pi)", 'statement');

0 (2.36)

Partial statements or incomplete expressions cannot be parsed. Multiple statements or ex-
pressions can be interpreted via multiple calls to parse using the lastread and offset options.

For more information, refer to the parse help page.

Converting Expressions to Strings
To convert an expression to a string, use the convert command.

Maple can convert a variety of expressions. For more information about expressions, see
Maple Expressions (page 41). For more information about conversions in Maple, refer to
the convert help page.

> convert(a, 'string');
"q" (2.37)
> convert (a+b-c*d/e, 'string');
"a+b-c*d/e" (2.38)
> convert (42, 'string');

40" (2:39)

2.6 Using Special Characters

Token Separators

You can separate tokens by using white space characters or punctuation marks. The separ-
ator indicates the end of one token and the beginning of the next.

2.6 Using Special Characters <« 27

Blank Spaces, New Lines, Comments, and Continuation

The white space characters are space, tab, return, and line-feed. This guide uses the term
new line to refer to a return or line-feed since the Maple system does not distinguish between
these characters. The term blank refers to a space or tab.

The white space characters separate tokens, but are not themselves tokens. White space
characters cannot normally be used within a token.

> a: = b;
However, you can use white space characters between tokens.
> a * x + x*y;
ax+xy (2.40)
White space characters can be part of a token in a name or string formed by enclosing a

sequence of characters in left single quotes or double quotes respectively. For more inform-
ation, see White Space Characters within a Token (page 38).

Except in a string, all characters that follow a pound sign "#" on a line are part of a comment.
For information about adding comments in Maple procedures, see Adding Comments to a
Procedure (page 7).

>a =1+ x + x*2; #This is a comment

a=x+x+1 (2.41)

Since white space and new line characters are functionally identical, you can continue
statements from line to line, as described in Entering a Procedure Definition (page 4).

>a:=1+ x +

x"2;
a=x+x+1 242)

Note: Press Shift+Enter to continue typing on the next line without evaluating the ex-
pression.

To enter a long number or string on multiple lines, use the backslash character (\) as a line
continuation character.

Line continuation functions as follows: if a backslash \ immediately precedes a new line
character, the Maple parser ignores both the backslash and the new line. If a backslash is
in the middle of a line, Maple usually ignores it. For more information about the backslash
character and exceptions to this rule, refer to the backslash help page.

28 + 2 Maple Language Elements

You can use the backslash character to break up a long sequence of digits into groups of
smaller sequences to enhance readability.

> "The input should be either a list of \
variables or a set of variables";

> G:= 0.57721566490153286060\
6512090082402\43104215933593992;
G
= 0.577215664901532860606512090082402431\ (2.43)
04215933593992
You can also enter long strings by using a continuation character. Maple automatically
concatenates string constants that are on separate lines, so another way to enter a long string

is to close one set of double quotes at the end of a line and enter a new double quote at the
beginning of the next line.

> S:= "This is the start of a long string "
"and this is part of the same string with no line in between";

S := "This is the start of a long string and this is part

.\ (2.44)
of the same string with no line in between

Punctuation Marks

The punctuation marks that act as token separators are listed in Table 2.6.

Table 2.6: Token Separators

; semicolon (left parenthesis
colon) right parenthesis
left single quote |[left bracket

! right single quote |] right bracket
vertical bar { left brace

< left angle bracket |} right brace

> right angle bracket |, comma

Semicolon (;) and Colon (:)

Use the semicolon and the colon to separate statements. During an interactive session, a
semicolon displays the result of the statement while a colon prevents the result of the
statement from displaying.

2.6 Using Special Characters * 29

> fi=x->x"2;

f= x—>X2 (2.45)

> p:=plot(f(x), x=0..10):

Right Single Quotes (')

Enclosing an expression, or part of an expression, in right single quotes (or apostrophes)
delays the evaluation of an expression (subexpression) by one level. This is often used to
ensure that procedure options are passed correctly as unevaluated names even when they
have a value. For more information, see Unevaluated Expressions (page 46).

> 'sin' (Pi), sin(Pi);

sin(n), 0 (2.46)
> right := 42;
right := 42 (2.47)
> 1limit(1/x, x=0, 'right');
% (2.48)

Left Single Quotes ()

To form a name, enclose an expression in left single quotes.
> "My Var® := 4;

My Var := 4 (2.49)

Parentheses

The left and right parentheses group terms in an expression, arguments in a function call,
and parameters in a procedure definition.
> (a+b) *c; cos(Pi);
proc(x, y, z)
x+y+z;
end proc:

(a+Db)c
-1 (2.50)

The left and right parentheses are also used to select components from certain data structures
(programmer indexing).

30 < 2 Maple Language Elements

Square Brackets

Use the left and right square brackets to form indexed (subscripted) names and to select
components from data structures such as Arrays, tables, and lists. For more information on
selection, see Indexed Expressions (page 62). For more information on mathematical index-
ing and programmer indexing, see Basic Data Access (page 145).

> afll]; L:=[2,3,5,7]; L[3];

ay

L:=12,3,5,7]
5 (2.51)

Square Brackets and Braces

Use the left and right square brackets ([]) to form lists, and the left and right braces ({}) to
form sets. For more information on sets and lists, see Immutable Data Structures (page 125).

> L:=[2,3,5,2]; s:={2,3,5,2};
L:=102,3,5,2]
S:=1{2,3,5} (2.52)

Angle Brackets

The left and right angle brackets (<>) in conjunction with the the comma, semicolon, and/or
vertical bar (|) can be used to create Matrices and Vectors. For more information, refer to
the Matrix and MVshortcut help pages.

><1,2,3; 4,5,6>;

123

(2.53)
456

><1,2,3| 4,5,6>;

25 (2.54)

Comma

Use the comma to form an expression sequence. Expression sequences are used to specify
the arguments of a function call or the elements of a list or set.

2.7 Types and Operands « 31

> sin(Pi), 0, limit(cos(xi)/xi, xi=infinity);

0,0,0 (2.55)

Escape Characters

An escape character indicates that the character that follows the escape character must be
handled in a special manner. The escape characters in Maple are ?, !, #, and \.

? - The question mark character, if it appears as the first non-blank character on a line,
opens the Maple help system. The words following ? on the same line determine the

terms used to display a help page. Use either "," or "/" to separate the words that follow
the question mark character. For more information, refer to the help help page.

! - The exclamation mark character, if it appears as the first non-blank character on a line,
passes the remainder of the line as a command to the host operating system. For more
information, refer to the system and escape help pages.

and (*, *) - The pound sign character indicates that the characters that follow it on the
line are a comment. The multiline comment characters, (*, and *) indicate the beginning
and end of a comment. For more information, see Adding Comments to a

Procedure (page 7) or refer to the comment help page.

\ - The backslash character is used to continue lines, to group characters in a token, and
introduce control characters. For more information, refer to the backslash help page.

2.7 Types and Operands

In most programming languages, data is divided into different classes of information called
data types. In Maple, there is a logical or mathematical notion of #ype that is related to, but
distinct from, the underlying data structure.

DAGs

All data in Maple is stored as a directed acyclic graph (DAG). An identifying tag for each
DAG indicates what type of data it stores and how it is stored. Names, strings, lists, and
positive and negative integers are examples of some DAG types. For a list of DAG types
and how they are stored in memory, see Internal Representation (page 599). The op command
(short for operand) can often be used to determine the DAG type of the underlying data by
returning the zeroth operand. This only applies to certain data structures where op(0,e),
where e is an expression, is defined as a special case. For more information, see the partic-
ular data structure help page.

>op(0, [1,2,3]);

list (2.56)

32 « 2 Maple Language Elements

> op(0, "some text");

string (2.57)
> op(0, “some name’) ;

symbol (2.58)
> op (0, 123456);

Integer (2.59)

However, the correspondence is not exact. A notable exception to this is function calls
where the zeroth operand is the function name.

> op(0, £(x));
f (2.60)
> op(0, op(0, £(x)));

symbol (2.61)

When names are assigned to data, they act as pointers in other languages. However, for
most purposes, the Maple evaluation rules are such that you can think of them as variables.
If you want to manipulate an assigned name rather than the data assigned to it, you can use
right single quotes (also called unevaluation quotes), which are described in more detail
in Unevaluated Expressions (page 46).

Assigned names that are pointers do not require type declarations as in low-level program-
ming languages. This means that a name a may be assigned an integer and then later assigned
a list without discretion. This system of weak typing means that, when writing robust code,
you must verify types since variables may be assigned any value.

Maple Types

The type facility in Maple is accessed by using the type command. It is a mathematical type
facility; however, some basic types such as integer or list map directly to the type of DAG.
Some types, such as numeric, encapsulate a group of many different kinds of structures
and structured types, such as name”integer, can match a very specific value.

Type checking is important in Maple to decide whether an expression is valid input for
procedure calls and Maple commands. You can use the the type command or the :: operator
for type checking. The operator form is primarily used to declare the type of a procedure
parameter (see Procedures (page 195)). The type command has the following syntax.

‘ type (expression, typeName);

2.7 Types and Operands * 33

If the expression is of type typeName, the type command returns a value of true. Otherwise,
a value of false is returned.

> type([1,2,3], 'list');

true (2.62)
> type ("string", 'list');

false (2.63)
> type (123456, 'integer');

true (2.64)
> type (£(x), 'function');

true (2.65)

The type of any integer is integer. The type command can also interpret many subtypes of
integers, some of which are listed in Table 2.7.

Table 2.7: Subtype

Subtype Meaning

integer|[8] 64-bit sized integer
integer[4] 32-bit sized integer
negint negative integer
posint positive integer
nonnegint non-negative integer
nonposint non-positive integer
even even integer

odd odd integer

prime prime number

For more information, refer to the type help page, which also contains a complete list of
types in Maple.

The type facility can also interpret compound or structured types such as list(integer) for a
list of integers or list({negint,prime}) for a list of negative or prime integers.

> type([-1, 2, 11], 'list({negint,prime})');
true (2.66)
> type ([0, 2, 11], 'list({negint,prime})’');

false (2.67)

34 + 2 Maple Language Elements

For more information about structured types, see type,structure.

Operands and op

In addition to providing information about the underlying type, the op command can provide
information about the other operands or parts of a data structure. Most data structures in
Maple can be divided into components. For example, an equation of the form x=y+x can
be divided as follows.

* the operator, =
« the left-hand side, x
* the right-hand side, y+x

To determine the operands and the number of operands in an expression, use the op and
nops commands respectively. These commands have the following basic syntax.

op(1, expression);

nops (expression);

If the optional first argument i to the op command is a positive integer, the ith operand of
expression is returned.

> eq = x=y+x:

> nops (eq) ;

2 (2.68)

> op(0, eq);
= (2.69)

> op(l, eq);
X (2.70)

> op(2, eq);
y+X (2.71)

> op(0, eq) (op(l,eq), op(2,eq));
X=y+X (2.72)

The op command can also determine the operands of an expression at various levels of a
structure with the following syntax.

op((i1, i2, ...], expression);

This syntax is equivalent to and more efficient than a nested call to the op command.

2.7 Types and Operands * 35

> op([2,0], eq);
A (2.73)
> op(0,0p(2, eq));

A (2.74)

This hierarchical structure of expressions explains the name DAG. The internal representation

of X =y + X looks like an infix expression tree. See Figure 2.1

Figure 2.1: Expression Tree

For efficiency, Maple does not store multiple copies of identical objects, so the two x nodes
in the tree can be represented in a picture like the one in Figure 2.2. In Figure 2.1 you see
two "x" nodes in the tree, implying a copy of each "x". Figure 2.2 shows that the same in-
stance of "x" is referred to in both places.

36 + 2 Maple Language Elements

Figure 2.2: Expression DAG

The term directed acyclic graph simply refers to this variation of a tree where nodes may
have multiple parents.

The tree form of an expression can be displayed using the dismantle command.

> dismantle (eq) ;

EQUATION (3)
NAME (4) : x
SUM (5)
NAME (4) : vy
INTPOS (2): 1
NAME (4) : x
INTPOS(2): 1

This model is not exactly what is used in practice but the principle of uniqueness, with respect
to nodes, still applies. Maple uses a more sophisticated internal representation for sums as

described in Internal Representation (page 599). The real structure of the DAG shown in
Figure 2.3.

2.8 Avoiding Common Problems <« 37

(SUMI*I-*l

Figure 2.3: Actual Expression DAG

The next three chapters introduce many of the other types in Maple and describe how to
create and use them in programs.

2.8 Avoiding Common Problems

This section provides you with a list of common mistakes, examples, and hints that will
help you understand and avoid common errors. Use this section to study the errors that you
may encounter when entering the examples from this chapter in a Maple session.

Attempting to Assign to a Protected Name

An exception is raised if you attempt to assign a value to a protected name. To resolve this
error, specify a different name.

For more information about protected names, see Protected Names (page 45) or refer to
the protect help page.
> int := 10;

Error, attempting to assign to “int’ which is protected. Try declaring

‘local int’; see ?protect for details.

38 « 2 Maple Language Elements

Invalid Left-Hand Assignment
An exception is raised if you attempt to assign a value to a string.

For more information about strings, see Strings (page 22) or refer to the string help page.
> "my string" := 10;

Use only valid names on the left-hand side of an assignment statement.

Incorrect Syntax in Parse

The parse command accepts a string as its argument. An exception is raised if the string is
syntactically incorrect.

For more information, refer to the parse help page.
> parse ("a*2--b") ;

Error, incorrect syntax in parse: “-' unexpected (near 5th character
of parsed string)

The error message indicates the character number (counted from the left double quote)
where the error was detected. In this case, the 6th character (the second minus sign) caused
the error.

White Space Characters within a Token

An exception is normally raised if a white space character occurs in a token.

> evalb(2 < = 3);

The less-than-or-equal operator <=is a token in Maple. Therefore, it cannot contain a space.
> evalb (2 <= 3);

true (2.75)

Incorrect Use of Double and Single Quotes

In Maple, double quotes form a string, left single quotes form a name, and right single
quotes delay evaluation of an expression. Confusing a string with a name, or a name with
delayed evaluation causes errors. Study the following examples to see the different uses of
these quotes.

For more information about using quotes, see Punctuation Marks (page 28) or refer to the
quotes help page.

To form a string, enclose the expression in double quotes.

2.8 Avoiding Common Problems + 39

> ||2 + 3|| ;
"2 + 3" (2.76)
> type((2.76),'string');

true 2.77)

To form a name, enclose the expression in left single quotes. Unlike a string, which is dis-
played with double quotes around it, names are usually printed without quotes. The name
in this example only looks like an expression.

> 2 + 37,

2+ 3 (2.78)
> type((2.78), 'name"') ;

true (2.79)
To delay the evaluation of an expression, enclose it in right single quotes.
>x :=2:y :=3: £ :='x+y';

fim x+y (2.80)

> eval (f) ;

5 (2.81)

Avoid Using Maple Keywords as Names

If you use a Maple keyword in a name, and do not enclose it in left single quotes, an excep-
tion is raised.

>1 + end;
To resolve this issue, select a variable name that is not a Maple keyword.

Note: It is possible to use a Maple keyword as a name by enclosing it in left single quotes.
For example,

> ‘end’ := 2;
end := 2 (2.82)
>1 + “end’;

3 (2.83)

40 + 2 Maple Language Elements

However, this approach is not recommended, since it makes it very likely that errors will
be introduced if, for example, you forget to place back-ticks around keywords. When pos-
sible, avoid using keywords as names.

2.9 Exercises

1. Using Maple operators, do the following:
a Compute the sum of 5434 and 6342.
b Compute the product of 92 and 310.
¢ Compute the quotient of the result from a) divided by the result from b).
d Create a list containing the numbers from a), b), and c).
e Square each element of the list from d).

2. Create variables named "my quotient" and "my remainder". Use these variables and the
irem command to find the integer quotient and remainder of 12345 divided by 234. Tip:
Because the irem command stores extra results by assigning to the third argument you
will need to make sure the name is passed and not its assigned value. Do this by using
uneval quotes (').

3. Compute 3*(3498) modulo 7.

4. Concatenate the three strings "int", "(x2,", and "x)". Parse the resulting string. Evaluate
the parsed string.

5. Determine a random integer between 40 and 100 using the command rand(40..100).
Concatenate this number with the string, "The student's grade is ". Extract the student's
grade from the resulting string.

6. Assign the expressions x*2 and x*x to the names a and b. Find the three operands of a
and b. Compare the results with those returned by using the dismantle command, that
is, dismantle(a) and dismantle(b). The dismantle command displays the internal data
structure used.

3 Maple Expressions

This chapter introduces Maple expressions associated with scalar data structures.

3.1 In This Chapter

* Introduction: automatic simplification and evaluation; syntax and constructors
» Using names, strings, and numbers in expressions
* Unevaluated expressions

» Expression types: arithmetic, Boolean, relational, and set-theoretic expressions; expressions
for data structures; indexed expressions; function and member selection expressions

» Assigning attributes

* Classifying, examining, and manipulating expressions
3.2 Introduction

Expressions and Statements

Maple language elements can be classified as either expressions or statements. An expression
is a first-class data element in the Maple language. In other words, expressions can be stored
in data structures, passed as arguments to procedures, and manipulated in various ways;
they are often used to represent mathematical objects. Statements, on the other hand, are
not first-class data elements; they generally describe non-mathematical programming con-
structs and are used to affect the state of Maple.

This chapter describes expressions associated with scalar data structures. For information
about non-scalar data structures, see Basic Data Structures (page 125).

For more information about Maple statements, see Maple Statements (page 169).

Automatic Simplification and Evaluation

Maple uses two processes to compute expressions: automatic simplification and evaluation.
Automatic simplification is a process that Maple applies to the input immediately; this
process cannot be controlled. Expression evaluation occurs after an initial round of automatic
simplification; this process can be controlled in certain ways. For each kind of expression
described in this chapter, the rules for both automatic simplification and expression evaluation
are described.

Syntax and Constructors

You can create most expressions by entering the appropriate syntax. However, some expres-
sions, such as expressions that include tables or a series, can only be created by calling a

41

42 + 3 Maple Expressions

constructor. A constructor is a command that can be used as an alternative method of creating
certain expressions.
For example, a sum that would normally be entered using the syntax for addition

>a+b+c+ d;

at+b+c+d (3.1

can also be entered using the constructor "+".

>+ (a, b, ¢, d);
a+b+c+d (3.2)

With some exceptions (for example, series, lists, sets, and procedures), the name of the
constructor for an expression can be displayed by using the op command with its first argu-
ment equal to 0.

>op(0, a+b+c+d);
T+ (3.3)

The example above shows that the constructor for the expression a + b + ¢ + d is the com-
mand assigned to the name "+.

3.3 Names

Names have several purposes in Maple. They can be used to reference algebraic indeterm-
inates, symbols, and variables in your code.

Names (page 20) provided a basic introduction to Maple names. The following section
describes concepts related to names in more detail.

A Maple name can be either global or local, depending on its scope. In this chapter, only
global names are used. A global name is created either by referring to it at the top level of
your program or by declaring it to be global in either a procedure or module definition. For
more information about scope, see Variables in Procedures (page 217).

Two names are the same if they have the same spelling and scope. Maple keeps only one
copy of any name in memory, so in a large expression that includes an indeterminate x,
only one copy of the name x is kept in memory. Each occurrence of x in the expression
refers to the same name x.

The polynomial

> x~3 - 3*x72 + 3*x - 1;

X-3X¥+3x-1 (34)

3.3 Names °* 43

contains three occurrences of the name x, but all three point to the same location in memory.

Maple is unique in that names can represent themselves. As a result, you can use names as
algebraic indeterminates, for example, to construct polynomials or other algebraic expres-
sions.

Names can also be used to represent variables in your code. When a name is assigned a
value, that name is associated with another expression and evaluating the name results in
its assigned value being returned. When a name is unassigned, evaluating the name results
in the name itself.

In this example, the name a is assigned to the value 2.

>a = 2;

a=?2 (3.5)
Before using a name on the left side of an assignment, the name has no assigned value.
> Db;

b (3.6)

When a value is assigned to a name, subsequent evaluation of the name results in its assigned
value.

> a;
2 3.7)
For more information about assigning values, see Assignments (page 170).

Creating Names: Lexical Conventions

When creating names in Maple, you must be aware of certain lexical conventions.

Environment Variables

Names beginning with an underscore character (_) are reserved for use by the Maple library.
You should nof create names that begin with an underscore.

As a special case, any name beginning with the four character sequence " Env" is treated
as an environment variable.

Environment variables are a special kind of variable in that an assignment to one within a
procedure is automatically unassigned when the procedure has finished running. Therefore,
environment variables only affect subprocedures called from that procedure, unless they
are superseded locally.

44 < 3 Maple Expressions

The following predefined environment variables do not begin with _Env: Testzero, Use-
HardwareFloats, Rounding, %, % %, % % %, Digits, _ans, index/newtable, mod, Order,
printlevel, Normalizer, NumericEventHandlers.

Environmental Variables Scope

Unlike a local variable, whose scope is restricted to the procedure containing the local
variable itself, an environment variable can be referenced globally by all sub procedures
called by or deeper than the current procedure, but the environment variable cannot be ref-
erenced by procedures above the current procedure.

For more information about environment variables, refer to the envvar help page. For more
information about procedures, see Procedures (page 195) or refer to the procedure help
page.

Constants

In addition to keywords, as described in Reserved Words (page 16), Maple has several
predefined constants.

You can display a sequence of all the names that represent symbolic constants in Maple by
using the global variable constants.

> constants;
false, vy, «, true, Catalan, FAIL, it (3.8)
> seq(i=evalf (i), i in constants);
false = false, y = 0.5772156649, « = Float(«), true

= true, Catalan = 0.9159655942, FAIL = FAIL, &t (3.9
= 3.141592654

Maple also has several other special constants. Table 3.1 lists some of them. For more in-
formation, refer to the initialconstants help page.

Table 3.1: Initially Known Names

Name Meaning Name Meaning

lasterror the most recent error constants initially known symbolic
constants

libname path of the Maple libraries | Digits number of digits in

floating-point computations

NULL empty expression sequence |FAIL cannot determine value

Order truncation order for series |printlevel control display of information

3.3 Names °* 45

Name Meaning Name Meaning

1 complex number undefined |undefined numeric quantity

For more information about constants in Maple, refer to the constant help page.

Protected Names

A protected name has a predefined meaning; you cannot directly assign a value to a protected
name. For example, the names of built-in commands such as sin; utility operations such as
degree; commands such as diff; and type names such as integer and list, are protected
names. An error occurs if you attempt to assign a value to any of these names.

> 1list := [1,2];

Error, attempting to assign to “list’® which is protected. Try

declaring “local list’; see ?protect for details.

The Maple system prevents these names from re-assignment. However, even though it is
not recommended, it is possible to reassign values to these names by first unprotecting them
as illustrated by the following statements.

Note: You can unassign values to Maple system names by entering a restart command or
by ending your Maple session. In general, using the unprotect command to modify Maple
system names is not recommended.

> unprotect(sin) ;
> sin := "a sin indeed";

sin := "a sin indeed" (3.10)
As a result, Maple components that rely on the sine function may not work as expected.
> plot(sin, 0..2*Pi, coords=polar);
To check whether a name is protected, use the type command.
> type(sin, protected);

false (3.11)

> type (sine, protected);

false (3.12)

To prevent values from being assigned to a name, use the protect command.

> mysqgr = x -> x*2;

mysqr .= x—x° (3.13)

46 + 3 Maple Expressions

> type (mysqr, protected) ;

false (3.14)
> protect(mysqgr);
> mysqgr := 9;

Error, attempting to assign to ‘mysqr’ which is protected. Try

declaring “local mysqgr ; see ?protect for details.

3.4 Unevaluated Expressions

In general, Maple evaluates all expressions immediately. In some situations, it is necessary
to delay the evaluation of an expression. An expression enclosed in right single quotes is
called an unevaluated expression. It takes the general form

'expr'

where expr is an arbitrary expression. All of the expressions contained within the right
single quotes are not evaluated.

For example, the sin command normally performs the following computations.
> sin(0.5);

0.4794255386 (3.15)
>sin(Pi / 2);

1 (3.16)

To prevent the evaluation of these computations, you can enclose the expressions in right
single quotes (also called unevaluation quotes) as follows.

> 'sin(0.5)';
sin(0.5) (3.17)
> 'sin(Pi / 2)';
(1
sinf — = (3.18)
2
You can enclose expressions of any length or complexity in unevaluation quotes.
> 'sin(0.5)*2 + cos(0.5)*2';

sin(0.5)% + cos(0.5)? (3.19)

3.4 Unevaluated Expressions * 47

Also, you can enclose subexpressions in unevaluation quotes to prevent certain parts of an
expression from evaluating.

> 'sin(0.5)'*2 + cos(0.5)*2;
sin(0.5)° + 0.7701511530 (3.20)
The sections below describe cases in which you may want to delay evaluation.

Protecting Names and Options

Unevaluation quotes can be used to prevent the evaluation of names.

>a =x"2 +x + 1;
a=x+x+1 (321)
> a;
X +x+1 (3.22)
> 'a' ;
a (3.23)

This is important when you want to use a variable as a name, regardless of whether it has
an assigned value.

Also, unevaluation quotes can be used to protect options. Names are often used as options
to control the behavior of a command. If the name of that option has been used as a variable,
the command that has been called uses the value of the variable and not the option name as
expected. Unevaluation quotes can be used around option names to protect against this.

> periodic := 4;
periodic := 4 (3.24)
> numtheory:-cfrac(34(1/2), 'periodic') ;

1

1+

L+ 1 (3.25)

1
2+ ..

2 +
1+

In the next example, an exception is raised because the name of a command option is not
enclosed in unevaluation quotes.

48 + 3 Maple Expressions

> output := 2:
> CodeGeneration:-C(x*2, output = string);

Error, (in Translate) options [2 = string] not recognized

In this example, the best way to use the output option is to quote the name, thus preventing
its evaluation in case the name output has an assigned value.

> CodeGeneration:-C(x*2, 'output' = 'string');

"cg =X *X;

(3.26)

Tip: It is also recommended that you also use unevaluation quotes for the names of types
and conversions. For more information, see Structured Types (page 120).

For more information on types and conversions, refer to the type and convert help pages.

Generic Expressions

Expressions sometimes describe the operation to take place in a generic sense. For example,
BJi] can be used in certain contexts with unevaluation quotes to denote a generic index into
B. If unevaluation quotes are not used, Maple will try to look up the specific ith element of
B.

>B :=<1,2,3,4>;

1
2
B:= (3.27)
3
4
> sum(B[i], i = 1..4);
Error, bad index into Vector
> sum('B[i]', i = 1..4);
10 (3.28)

Pass by Reference

Some commands accept a name as an argument, with the intent that it will be used to store
a result. Unevaluation quotes ensure that the variable name (and not the value assigned to
the variable) is used in the procedure.

3.4 Unevaluated Expressions * 49

> remainder := irem(45,3,'quotient'); quotient;
remainder = 0

15 (3.29)

irem (44,3, 'quotient'); quotient;

> remainder :
remainder = 2

14 (3.30)

If quotient is not enclosed in unevaluation quotes, the second call in the above example
raises an exception because 15, the value of quotient, is not a valid third argument to the
irem command.

Displaying the Original Command

For display purposes, it is sometimes useful to show the original command before a solution
is computed.

> v := 'int(x*y”*2, [x=0..1, y=0..11)';
1.1
v:zj J xy2 dxdy (3.31)
070
> v
1
— 3.32
6 (3.32)

Unassigning Names

To reset the value of a name, assign the unevaluated name (its initial value) to the name.
For example,

> x = 243;

X:=75 (3.33)

X:= X (3.34)

Now, the value of x is reset to x.

50 < 3 Maple Expressions

Evaluation and Automatic Simplification

It is important to note the differences between computations that occur during the evaluation
process and those that occur during the automatic simplification process. Unevaluation
quotes do not prevent automatic simplifications from occurring. For example, basic numeric
arithmetic is one form of automatic simplification. In the following expression, the unevalu-
ation quotes do not prevent the numeric addition from occurring.

> '2 +3';

5 (3.35)

In this example, Maple first simplifies the unevaluated sum '2 + 3' to the expression 'S'.
During the evaluation process, Maple "removes" the right single quotes and produces the
numeric result 5.

All unevaluated expressions are of the type uneval. You can use the type command to check
whether an expression is an unevaluated expression.

> type(''x'', 'uneval');
true (3.36)

In the example above, the first argument to the call to the type command is the name x,
which is enclosed in two sets of unevaluation quotes. The result of evaluating the first argu-
ment is the unevaluated expression 'x' because the evaluation process removes one set of
unevaluation quotes. The resulting expression is therefore of type uneval.

On the other hand, if you enclose the first argument to type in only one set of unevaluation
quotes, the evaluation process removes the only set of unevaluation quotes, leaving the
result as the name x, which is not an unevaluated expression.

> type('x', 'uneval');
false (3.37)

In other words, the type command accesses the name x, rather than the unevaluated expres-
sion 'x', since the type command accesses the result of its arguments that have been evaluated.

In the example above quotes were also used around the type name uneval. This provides a
measure of protection just in case the variable name, uneval has an assigned value (which
is unlikely because uneval is protected). During normal function evaluation, each argument,
x and uneval is evaluated. With quotes, 'x' becomes x, and 'uneval' becomes uneval as
seen by the type procedure. Without quotes, x would become the value of x (which may be
the symbol x itself), and uneval would become the value of uneval, which is usually the
symbol uneval itself. Unevaluation quotes make the displayed call robust against cases
where the variable you are using unexpectedly has a value. It is rarely necessary to use this

3.4 Unevaluated Expressions * 51

level of caution in interactive use, but when you write programs, it is a good practice to in-
clude unevaluation quotes to make your code as robust as possible.

Another special case of unevaluation arises in function calls.

£ (a)

Suppose f is not assigned to anything. Since evaluating f does not call a procedure, Maple
returns the unevaluated function call f(a).

> f(a);
(¥ +x+1) (3.38)

Similarly, using uneval quotes around a function evaluation will cause Maple to behave as
if the named function had no value.

> ''sin''(Pi);

'sin'(n) (3.39)

> (3.39);
sin(r) (3.40)

> (3.40) ;
0 (3.41)

You will find this facility useful when writing procedures that need to act on the whole
original expression, not the evaluated result.

For more examples and information on unevaluated expressions, refer to the uneval help
page.

Example: Defining a Procedure that Is Returned Unevaluated

You may need to use unevaluation quotes when you are defining a procedure that is returned
unevaluated. This is necessary, for example, when you are defining a procedure that evaluates
a numeric result for numeric inputs, but does not produce a numeric result otherwise. (The
procedure may perform normalizations and apply symmetries, if appropriate.) It is important
to write procedures using this method so that they can be plotted, optimized, or numerically
integrated, for example.

Consider the following procedure.

> f := proc(x)
if x > 2 then
x

52 « 3 Maple Expressions

else
2
end if
end proc:

Using the wrong calling sequence in a call to plot results in an error.
>plot(£(x), x = -10 .. 10);

Error, (in f) cannot determine if this expression is true or false:
2 < x

The correct calling sequence would be either plot('f'(x), x=-10..10), which puts uneval
quotes around f, or plot(f, -10..10), which avoids computing f(x) by omitting the variable

altogether. Remember that arguments in a function call are evaluated first before the called
procedure sees them.

Here, the precursor evaluation of f(x) tries to apply f to the unassigned symbol, x.
>f(x);

Error, (in f) cannot determine if this expression is true or false:
2 < x

The procedure could be rewritten so that it returns unevaluated whenever it encounters ar-
guments that cannot be processed. This trick causes f(x) to evaluate to itself when non-nu-
meric input is passed in.
> f := proc(x)
if type(x, 'numeric') then
if x > 0 then
X
else
2
end if
else
'procname(_passed)'
end if
end proc:

The unevaluated expression 'procname(_passed)' returns the full calling sequence unevalu-
ated.

>£(x);
f(x) (342)

The expression procname(_passed) must be enclosed in unevaluation quotes to prevent
an infinite loop.

3.5 Numbers * 53

3.5 Numbers

Maple supports computation with exact numerical quantities, as well as approximate com-
putation to arbitrarily high accuracy with floating-point numbers.

Integers

A natural integer is any sequence of one or more decimal digits.

> 12345;

12345 (3.43)

The maximum number of digits is system-dependent. To determine the maximum number
of digits, use the following command.

> kernelopts('maxdigits');
38654705646 (3.44)

A signed integer is formed by appending + or - before any natural integer.
> -42;

-42 (3.45)
> +42;

4?2 (3.46)
An integer is either a natural integer or a signed integer.

You can use the length command to determine the number of digits in an integer.
> 2742;

4398046511104 (3.47)
> length(2%42);

13 (3.48)

Fractions

A rational number (fraction) is the quotient of two integers, where the denominator is always
positive.

Use the division operator (forward slash) / to enter a fraction.

integer / natural

54 « 3 Maple Expressions

For example,

>2/ 3;

2
— 3.49
3 (3.49)

You can enter a fraction in which the numerator and denominator have a common (integer)
factor, but Maple automatically simplifies this to the lowest terms.

>4 / 6;
2
- 3.50
3 (3.50)
In addition, Maple automatically moves a negative sign to the numerator.
>2/(-3);
2
- 3.51
3 (351

Fractions are automatically simplified to an integer if the denominator is a divisor of the
numerator.

> 6/3;

2 (3.52)

You can use the numer and denom commands to extract the numerator and denominator,
respectively, of a fraction.

> numer (2/3);
2 (3.53)
> denom(2/3);

3 (3.54)

Fractions can also be created by using the Fraction constructor with the numerator and
denominator as arguments.

> Fraction(2, 3);

= (3.55)

Floats

Maple supports computation with floating-point numbers to arbitrary precision.

3.5 Numbers * 55

A float can be input using a period for the decimal.

> 2.3;
2.3 (3.56)
>2.;
2, (3.57)
> .7;
0.7 (3.58)
> -.567;
-0.567 (3.59)

Or, using exponent form using a suffix containing the letter "e" or "E" followed by an integer
with no spaces between.

> 4e3;
4000. (3.60)
> 2.3e6;
2.310° (3.61)
> .2E3;
200. (3.62)

Observe that spaces are significant. The first example is a difference rather than a float in
exponent form.

> .2e -3;
-2.8 (3.63)
> . 2e-3;

0.0002 (3.64)

Also, the following is invalid.

> 3.e4;

Floats represent numbers of the form s*10”e, where the number s is called the significand
or mantissa of the float, and the number e is called the exponent. The significand is a Maple
integer. Therefore, it is restricted to values that have, at most, the number of digits indicated
by the kernelopts('maxdigits') command.

56 <« 3 Maple Expressions

> kernelopts('maxdigits');
38654705646 (3.65)

The maximum value of the exponent is a platform-dependent quantity whose value may be
queried by using the Maple floats command.

> Maple floats('MAX EXP');

9223372036854775806 (3.66)
Similarly, the minimum value of the exponent is given by the value
> Maple floats('MIN_EXP');

-9223372036854775806 (3.67)

returned by the Maple_floats command. For more information, refer to the Maple floats
help page.

You can also create software floats by using the constructor SFloat. This constructor accepts
the significand and exponent as arguments, and has the general form

SFloat(m, e)

> SFloat(23, -1);
2.3 (3.68)

To extract the significand and exponent of a software float, use the SFloatMantissa and
SFloatExponent commands.

> SFloatMantissa(2.3);
23 (3.69)
> SFloatExponent(2.3);

-1 (3.70)

The significand and exponent are also the operands of a software float.

>op(2.3);
23, -1 (3.71)

Two software floats are equal if they represent the same number. However, equal floats by
themselves do not need to be the same object in memory.

> evalb(2.3 = 2.30);

true (3.72)

3.5 Numbers * 57

> addressof(2.3); addressof(2.30);
18446790986243770078
18446790986243787774 (3.73)
Observe that the significands (and therefore, also, the exponents) differ in this example.
> SFloatMantissa(2.3);
23 (3.74)
> SFloatMantissa(2.30);

230 (3.75)

Note that equal floats with different significands inside of two otherwise identical objects
will require something stronger than evalb for comparison. evalb is the implicit comparison
used when evaluating conditionals in if statements.

> evalb(2.3 + x = 2.30 + x);

false (3.76)
> evalb(<2.3,4.5> = <2.30,4.50>);
false (3.77)

Testing the difference of the two expressions, or calling a command to do a deeper compar-
ison may be necessary.

> evalb((2.3 + x) - (2.30 + x) =0);

true (3.78)
> EqualEntries(<2.3,4.5>, <2.30,4.50>);
true (3.79)

The names of the constructor SFloat and accessors SFloatMantissa and SFloatExponent
all begin with the letter S. The S stands for "software" because these floating-point numbers
are implemented in software. Maple also supports the floating-point numbers supported by
the underlying hardware, called hardware floats or hfloats. You can create a hardware float
by using the hardware float constructor HFloat.

> HFloat(24375, -3);

24.3750000000000 (3.80)

58 < 3 Maple Expressions

> h := HFloat(24.375);
h = 24.3750000000000 (3.81)
>op(h);

243750000000000000, -16 (3.82)

Note, however, that hfloats are binary floating-point numbers, rather than decimal floating-
point numbers. That means that unlike the example above, there is often round-off error
when decimal numbers are converted into hfloats. For more information, see Hardware
Floating-Point Numbers (page 272).

> op(HFloat(2.3));

229999999999999982, -17 (3.83)

The SFloatMantissa and SFloatExponent commands also accept hardware floats as input.
> SFloatMantissa(h);

243750000000000000 (3.84)
> SFloatExponent(h);

-16 (3.85)

For more information on floating-point numbers, see Floating-Point Numbers (page 270).

Complex Numbers

Maple supports arithmetic with complex numbers of the form a + bi, where i = -1 is
the imaginary unit. In Maple, the imaginary unit is normally denoted by I; that is, the upper-
case letter "I" is used rather than the lowercase "i". Therefore, the complex number with

the real part equal to 2 and imaginary part equal to 3 is entered, naturally, as follows.

> 2 + 3*I;
2+31 (3.86)

In general, a complex number has the form

re + im * I

where re and im are the real and imaginary parts of the complex number, respectively. If
the expressions e and im are of type extended_numeric; the resulting complex number
will be of type complex(extended numeric). (It is not necessary that re and im are reals;
they may be arbitrary algebraic expressions. However, in this case, the result of the syntax
above will generally be an algebraic expression that will not be a complex numeric constant.)

3.5 Numbers * 59

You can also create complex numbers using the Complex constructor. It can be called using
either one or two arguments. The single-argument form has the following syntax.

Complex (expr)

If the argument expr is of type complex, the Complex constructor returns the value of expr.
Otherwise, if expr is of type extended_numeric, the Complex constructor returns expr *
L.

> Complex(2), Complex(O), Complex(0.0);

21,0,0.1 (3.87)

> Complex(2 + 3*I), Complex(infinity), Complex(undefined) ;
2 + 31, o I, undefined1 (3.88)

The two-argument form has the following syntax.

Complex (re, im)

The first argument is interpreted as the real part and the second argument is interpreted as
the imaginary part, of the complex number constructed.

> Complex(2, 3), Complex(2.1, 3), Complex(0, 0);
2+3L21+3.L0 (3.89)

Note that if either of the arguments is a float, the real and imaginary parts of the complex
number created are both of type float.

A complex zero with floating-point real and imaginary components can have four sign
combinations.

>2z1 := 0.0 + 0.0*I; z2 := 0.0 - 0.0%I;
z3 := -0.0 - 0.0*I; z4 := -0.0 + 0.0*I;
z1=0.40.1
z2:=10.-0.1
z3:=-0.-0.1
z4:=-0.+0.1 (3.90)

Similar to 0.0 = -0.0, numerically, these four complex zeros are numerically equivalent.

> evalb(zl1 = z2 and z2 = z3 and z3 = z4);

true (3.91)

60 <« 3 Maple Expressions

If the arguments re and im are not of type extended_numeric, the Complex constructor is
returned unevaluated.

> Complex(u, v);

Complex(u, v) (3.92)
Except if one of the arguments is complex, in which case, an exception is raised.
> Complex(2 + 3*I, 1);

Error, invalid arguments for Complex constructor

It is important to understand that there is a single complex infinity, which is a point on the
Riemann sphere. It can be denoted in different ways:

> infl := infinity + infinity * I; inf2 := infinity - infinity * I;
inf3 := -infinity - infinity * I; inf4 := -infinity + infinity *
I;
infl == o + w1
inf2:= o —]

inf3:= -0 — I
inf4d:= -0 4+] (3.93)
However, all of these forms are numerically equivalent.
> evalb(infl = inf2 and inf2 = inf3 and inf3 = inf4);
true (3.94)
They are all treated as distinct from the positive and negative real infinities.

To select the real or imaginary part of a complex number, use the Re and Im commands,
respectively.

> Re(2.3 + sqrt(2)*1);
23 (3.95)

> Im(2.3 + sqrt(2)*I);

J2 (3.96)

Note that, for a symbolic expression of the form a + b*1, it is not assumed that a is the real
part and b is the imaginary part. Therefore, the Re and Im commands are not unevaluated
on such input.

3.5 Numbers * 61

> Re(a + b*I);
R(a+1b) (3.97)
> Im(a + b*I);

S(a+1b) (3.98)

However, the evale command uses special rules for processing complex expressions, in
which any unknown symbol is assumed to be real. Therefore, when the evalc is used, these
expressions are returned as follows.

> evalc(Re(a + b*I));
a (3.99)
> evalc(Im(a + b*I));

b (3.100)
For more information, refer to the evalc help page.

You can change the default name used to input and display the imaginary unit by using the
interface command.

> interface('imaginaryunit' =i);

1 (3.101)

(The previous value is returned.) After calling the command above, the name i is used to
represent the imaginary unit.

> Complex(2, 3);
2+31 (3.102)

When this command is used, the name i can no longer be used as a program variable. As
an example, the following statements display error messages.

>1i = 2;

Error, illegal use of an object as a name

>add(i%2, i =1 .. 5);

Error, illegal use of an object as a name

To restore the default imaginary unit, use the following command.

> interface('imaginaryunit' =1);

i (3.103)

62 <« 3 Maple Expressions

3.6 Indexed Expressions

Indexed expressions represent selection operations. The general form of an indexed expres-
sion is

‘ expr [index]

where expr is an arbitrary expression and index represents a sequence of expressions. The
following are examples of indexed expressions.

>2[3, 41;

23, 4 (3.104)
> all;
a (3.105)
>al[11;
a, (3.106)
>a[b];
a, (3.107)
>a[b, ¢ 1;
a, . (3.108)
> map[2];
map., (3.109)

>[01,2,31[2..3]1[11;
2 (3.110)
Note that the last example above contains a nested (or iterated) indexed expression.

The constructor for indexed expressions is the name ?[].

> ?[1°(s, [a, b, c]);

S (3.111)

a b, c
Note that the indices must be enclosed with square brackets in a list.

All or some of the elements of an index sequence can be extracted by using the op command.
The nops command will tell you how many elements are in the index sequence.

3.6 Indexed Expressions ¢ 63

>nops(a[b, ¢, d 1)

3 (3.112)
>op(al b, ¢, d]);
bcd (3.113)
>op(2, alb, c,d]);
C (3.114)
>op(2..3, al b, ¢, d 1);
¢ d (3.115)

Indexed expressions are often used to perform selection operations. The behavior of a selec-
tion operation depends on the type of expression, expr, and the index sequence given.

If expr is itself a sequence of expressions, the index sequence must evaluate to a positive
integer, an integral range, or the empty sequence. The following are all examples of valid
ways to index a sequence.

> expr := (1,2,3,4);
expr:=1,2,3,4 (3.116)
> expr[3];
3 (3.117)
>expr[1 .. 3];
1,2,3 (3.118)
> expr[];
1,2,3,4 (3.119)

>expr[2 .. 11;

The result of evaluating an indexed sequence is a selection of the components of the sequence.
The indexing sequence must represent a valid index or range of indices. Attempting to select
an entry beyond the length of the sequence and will raise an error.

> expr[88];

Error, invalid subscript selector

Similarly, components of lists, sets, arrays, matrices, and vectors can be selected

64 <« 3 Maple Expressions

>L :=[1,2,3,4]1;
L:=1[1,2,3,4]
> L[3 1;
3
>L[1..317;
[1,2,3]
> L[];
1,2,3,4
>M :=<1,2,3;4,5,6>;
123
“lase
> M[2,3];
6
> MJ[1..2,1..2];
12
45
> S := { red, blue, green, orange };

S := {blue, green, orange, red}

>S[31;

orange

(3.120)

(3.121)

(3.122)

(3.123)

(3.124)

(3.125)

(3.126)

(3.127)

(3.128)

Note that, because sets are sorted data structures, the order at construction time may not
match the order stored internally. It is not predictable what color will be returned by the

index used to specify the third entry above. (It may not be green.)

A negative number may be used as an index, which selects elements starting from the end
of the list. Positive and negative indices mixed in a range return an empty selection.

> L[-1 1;

(3.129)

3.6 Indexed Expressions ¢ 65

>L[-3 .. -2 1;
[2,3] (3.130)
>L[-3 .. 11;

[] (3.131)

Lists can be used as an index to pick out specific entries, such as the first and third entries
of a list, or the four corners of a matrix.

> L[[1,3] 1;

[1, 3] (3.132)
>M[[1,2],[1,3]1];
13
(3.133)
4 6

Indexing on arrays, matrices and vectors is very flexible. In the case of these data structures,
round-brackets can also be used to index in a way that is useful to programming. For example,
where M[1] will return the first row of the matrix, M(1) will return the first entry (regardless
of the number of dimensions).

> M[1];
[1 2 3] (3.134)

> M(1);
1 (3.135)

This class of data structures are known as rectangular tables, or "rtables" for short. For more
information on what ways they can be indexed, refer to the rtable indexing help page.

If expr is a name with no assigned value, the result of evaluating the indexed expression is
an indexed name. In this case, the index can be any sequence of expressions, and if desired,
it is up to your program to define the meaning of the expression.

> aName|[x72 - 3*x, "a string", anotherName[2, b]];

aName
X2 — 3 x, "a string", anotherName (3.136)

2,b
A string may be indexed by a positive integer, a positive integral range, or a general sequence.
The indexed string expression evaluates to itself, unless the indexing sequence is an integer
or integral range, in which case, the result is a substring of the indexed string.

66 < 3 Maple Expressions

> "abede"[3 1;

"c" (3.137)
> "abcde"[2 .. 4];
"bed" (3.138)
> "abcde"[u, v*2 - s*t];
"abcde”u' a2 (3.139)
> "abecde"[];
"abcde"[] (3.140)

If expr evaluates to a table, and if the index given is found in the table the expression eval-
uates to the corresponding entry. Otherwise, the indexed expression evaluates to itself.

>+t := table([a=1, b=2, (¢,d) =31);

t:= table([b=2,(c,d)=3,a=1]) (3.141)
>tlal;
1 (3.142)
>tl e, d];
3 (3.143)
>t[u, v];
Ly (3.144)

If expr evaluates to a module, the index must evaluate to the name of an export of the
module, and then the entire indexed expression evaluates to the value of expr:-index.

> m := module() export e, £ := 2; end module:
>m[e];
e (3.145)
> evalb(e =m[e]);
false (3.146)
>m[£];

2 (3.147)

3.7 Member Selection * 67

For more information about modules, see Programming with Modules (page 307).

3.7 Member Selection

The member selection operator :- is used to select exports of a module, and also to designate
a symbol as a global symbol. Member selection expressions have one of the following
general forms.

modexpr :— expname

¢~ name

The first form above is used to select a member of a module.
> m := module() export e, f£:= 2; end module:
> m:-e;
e (3.148)
> evalb(e = m:-e);

false (3.149)

2 (3.150)

The first operand, modexpr, must evaluate to a module. The second operand, expname, must
be a literal name; it is not evaluated. If expname is not a name, or is not the name of an export
of the module modexpr, an exception is raised. The syntax m:-e is similar to m[e], in that

they both evaluate module m's export e. The difference is that the index selection form will
evaluate e before resolving the export.

In the second form, the operand name must be a literal name. The expression :-name then
evaluates to the global instance of the name name.

The following example defines, and then immediately calls, a procedure which declares a
local variable t. Since this local variable is never assigned, it evaluates to itself. The call to
the evalb command then compares, on the left-hand side of the equation, the local name t
to the global name t resulting from applying the member selection operator to t. The result
is false because the global name t and the name t local to the procedure are different expres-
sions.

> proc() local t; evalb(t = :-t) end proc();
false (3.151)

For more information on modules and member selection, see Programming with
Modules (page 307).

68 < 3 Maple Expressions

3.8 Functions

A function expression is a Maple expression of the form

‘ expr(sequence)

that contains zero or more expressions in the sequence within the parentheses. It represents
a function call.

>F();
E() (3.152)
>F(x);
F(X) (3.153)
>F(x,y5);
F(x y) (3.154)
>sin(x +y);
sin(x + y) (3.155)

Typically, expr is the name of a procedure or mathematical function. It can be a general
expression.

The zeroth operand of a function expression is expr.
>op(0, F(x,y, 2));

F (3.156)
The other operands are the arguments,
>op(F(x,y, z));

XV Z (3.157)

and the number of operands is the number of arguments.
>nops(F(x, y, z));

3 (3.158)
> nops(F())’

0 (3.159)

Maple supports an algebra of operators, so that complicated expressions such as

3.8 Functions ¢ 69

> (£42 + g@h - 2)(x);
f(x)2 +g(h(x)) —2 (3.160)

can be formed. Note that Maple applies such "operator expressions" to the arguments. @
is the composition operator. For more information on composition of functions, see
Composition (page 105).

It is important to know that Maple computes numeric quantities as applicable operators with
constant values. Therefore, for example, the expression

>2(x);

2 (3.161)

is computed as an application of the constant operator 2 to the argument x, which evaluates
to 2. In fact, numeric "operators" can accept any number of arguments.
>2(x,y, 3);

2 (3.162)

Note that an expression such as
>'2(3)";

2(3) (3.163)
(in which unevaluation quotes are used to delay the evaluation process) appears to be a

product. However, this expression is, in fact, a function expression. When permitted to
evaluate fully, the result is the constant value of the operator.

>2(3);

2 (3.164)

Calls to Procedures

The most important kind of function expression to understand is the case in which the zeroth
operands is a procedure or, more commonly, an expression (typically, as a name) that
evaluates to a procedure.

p(argl, arg2, ..., argN) ‘

In this case, p is a procedure or an expression, such as a name, that evaluates to a procedure,
and argl, arg2, ..., argN are zero or more argument expressions.

70 < 3 Maple Expressions

For example, the name sin evaluates to a procedure that computes the mathematical sin
function. A function expression of the form

sin(expr)

computes the sin of its argument expr. This is performed as follows: Maple evaluates the
name sin and finds that it is assigned a procedure. The argument expr is evaluated to produce
a result. That result is then passed to the procedure assigned to the name sin and the result
computed by that procedure for the specific input is returned as the overall value of the
function call sin(expr).

For information on defining functions and procedures, see Functional Operators (page 104)
and Procedures (page 195).

3.9 Arithmetic Expressions

Arithmetic Operators

The arithmetic operators in Maple include + (addition), - (subtraction), * (multiplication),
/ (division), and ~ (exponentiation). These operators are used to create rational expressions,
such as polynomials.

> x*"2 - 3*x + 1;
¥ —3x+1 (3.165)

Addition and Subtraction

The addition operator "+ and the subtraction operator "-* are typically used as binary infix
operators, but may also be used as unary prefix operators to indicate a signed expression.

>a+ b+ 3;

a+b+3 (3.166)
>u - v;
u—v (3.167)
> +7;
7 (3.168)
> -42;
-42 (3.169)

A sum resulting from the evaluation of either an addition or subtraction operation is an ex-
pression of type "+".

3.9 Arithmetic Expressions * 71

> type(u-v, '""+7');

true (3.170)
The expression u-v has the operands u and -v; that is, it is a sum of the summands u and -
V.

>op(u-v);
u -v (3.171)

Note that subtraction is not an associative operator.
>(1-2)-3<>1-(2-3);
-4 # 2 (3.172)

However, addition is both associative and commutative:

>b+a+c=a+b+c;
b+a+c=b+a+c (3.173)

Although sums are formed by using the binary operator "+, they are actually expressions
of arbitrarily large arity (greater than unity). Since addition is associative, Maple "flattens"
all sums of more than two summands during the automatic simplification process. Therefore,
an expression of type "+ can have many operands.

>nops(a+b+c+d+e);

5 (3.174)

You can use the name "+ as a constructor to form a sum.
>+ (a, b, c);

b+a+c (3.175)
Since Maple performs automatic simplification, the number of operands of a sum may not
be apparent from the input.

>nops(a+2+b+3+c+4);

4 (3.176)

In this example, Maple combines the integer terms in the sum.

>a+2+b+3+c+ 4;

a+9+b+c G.177)

72 « 3 Maple Expressions

To see that this occurs during the automatic simplification process, enclose the input in
unevaluation quotes to delay evaluation.

>'a+2+b+3+c+4';

a+9+b+c (3.178)

In a sum such as
> 12 4+ 3';

5 (3.179)
the addition is performed, as indicated, during the automatic simplification process. The
same sum can be computed in another way:
>u = 3:
>'2 + u';

2+u (3.180)
In this example, the arithmetic is not performed because the value of the variable u does
not replace the name u during the automatic simplification process. If the unevaluation

quotes are removed to allow the full evaluation of the expression, numeric addition is per-
formed.

>2 4+ u;
5 (3.181)
Since addition is commutative, the order of summands in an expression of type "+ is arbit-

rary. It is fixed within a Maple session, but may vary from one session to another. Therefore,
you must not rely on the operands of a sum occurring in any specific order.

Operands of a sum are automatically simplified, recursively.
> '2/3 + sin(5*Pi/6 - 2*Pi/3)';
2 (1
— +Ssm| - w 3.182
S sin g 618
Since procedures are not called during the automatic simplification process, the example
above does not fully simplify to the result
> 2/3 + sin(5*Pi/6 - 2*Pi/3);

7
— 3.183
6 (3.183)

3.9 Arithmetic Expressions * 73

during the automatic simplification process. However, the argument to the sin command is

computed to the simpler form % T, just as it would if it had been entered by itself.
> '5%Pi/6 - 2*Pi/3';

%n (3.184)

If any numeric literal in a sum is a float, all the numeric operands are converted to floats
and their sum is computed as a float. For more information, see Floating-Point
Contagion (page 279).

>'a+2+b+ 3.7+ c+ Pi';

a+57+b+c+mn (3.185)

Arithmetic computed during the automatic simplification process includes arithmetic with
values of infinity, undefined values, and signed (floating-point) zeroes.

> '2.3 + undefined’';

Float(undefined) (3.186)
> 1'2.3 + infinity';
Float() (3.187)
>1-0.0 + 0';
-0. (3.188)

> 'infinity - infinity';
undefined (3.189)
> 'infinity - Float(infinity)';
Float(undefined) (3.190)

Sums of non-algebraic summands can be formed. A sum of lists of the same length returns
the corresponding list of sums. This occurs during the automatic simplification process.

>'la, b,cl+[x%x,y,2z1";
[x+a,y+ b z+c] (3.191)

Sums of arrays, matrices, and vectors occur during the regular evaluation process.

74 + 3 Maple Expressions

><1,2;3,4> + <5,6;7,8>;

6 8

3.192
10 12 G192

Attempting to add lists or matrices of different sizes results in an error.
>[01,21+101, 2 31;
Error, adding lists of different length
><1,2;3,4> + <1,2>;
Error, (in ‘rtable/Sum’) invalid arguments
Since the addition of sets (which are not ordered) is not well-defined, a sum formed with a
set is returned unevaluated.
>{1, 2} + {3, 41};
{1, 2}y +13, 41;
(1,2} +{3,4)
{1,2} +[3, 4] (3.193)

Multiplication and Division

Products are formed by using the *** and '/ operators. The result of evaluating either a
multiplication or division operation is an expression of type "*".

’

> type(a * b, '*!

)
type(a / b, ""*');

’

true
true (3.194)

You can use the dismantle command to print a representation of the internal structure of
any Maple expression.

> dismantle(a / b);

PROD (5)
NAME (4) : a
INTPOS (2): 1
NAME (4) : b

INTNEG (2) : -1

3.9 Arithmetic Expressions * 75

The output shows that the quotient is actually stored as a product of two factors: one con-
sisting of the expression a with a power of 1 and the other consisting of the expression b

with a power of -1: a’ pi-b.

Similar to sums, products are commutative and associative. Also, products are flattened due
to associativity, even though the *** operator is binary. Automatic simplification is applied
to products, so as with sums, numeric factors are automatically combined.

> 12 % 3 % x *y';
6xy (3.195)

Also like sums, the order of factors in an expression of type “*" is arbitrary, and may vary
between Maple sessions.

> 'y * x *x 3 x 2';
6xy (3.196)

The number of operands reflects the number of factors remaining after automatic simplific-
ation has taken place.

>nops(2 * 3 *x *vy);
3 (3.197)
>op(2*3*x*y);
6,xy (3.198)
The name *** can be used as a constructor to form products.
>'*"(a, b, c);

abc (3.199)

If any numeric constant in a product is a float, the result of gathering all of the constants
into a single factor is a float.

>'3.1*a/2/b*4';

6.200000000 a
b

> 1'2.3 * (5%pPi/6 - 2*Pi/3)';

0.3833333333 n (3.201)

(3.200)

This effect does not extend into function calls.

76 <+ 3 Maple Expressions

> 12.3 * sin(5*%Pi/6 - 2*Pi/3)';
2.3 sin(é n] (3.202)

You can multiply a list by a number and the product is applied to all of the list elements
during the automatic simplification process.

>'2*12,31";
[4, 6] (3.203)

Matrix multiplication is done with the *." operator rather than **'. Division is not defined
for matrices.

><1,2;3,4> . <5,6;7,8>;

19 22
(3.204)
43 50
><1,2;3,4> . LinearAlgebra:-MatrixInverse(<5,6;7,8>);
3 -2 (3.205)
2 -1 ’

Multiplying or dividing two arrays of the same size will perform paired element-wise oper-
ations on the individual entries. The element-wise operators *~ and /~ can be used on both
arrays and matrices to achieve the same result.

> Array([[1,2],[3,4]]1) * Array([[5,6],[7,81]);

5 12 |
(3.206)
21 32
> Array([[1,21,[3,411) / Array([[5,6],[7,811);
11
5 3
(3.207)
3 1
7 2

3.9 Arithmetic Expressions * 77

><1,2;3,4> [/~ <5,6;7,8>;

11
5 3
(3.208)
3 1
7 2
><1,2;3,4> *~ <5,6;7,8>;
5 12
(3.209)
21 32
For more information on element-wise operators, see Programming-Language
Operators (page 17).
Exponentiation
Powers are formed by using the " operator.
> a’*b;
a (3.210)
It is strictly a binary operator; nested powers must be written with parentheses.
> (a”b) *c;
C
(ab) 3.211)
> a* (b”*c) ;
C
o (3:212)

The following input results in a syntax error.

> a”b”’c;

Rational number powers are used to represent roots. Exact roots are left uncomputed, while
floating-point roots are computed during the automatic simplification process.

> 47 (1/2) ;
J4 (3.213)
> 1(2.1)7(1/3) ';

1.280579165 (3.214)

78 <« 3 Maple Expressions

Expressions to a power of 0 are reduced to unity during the automatic simplification process.
The type of the resulting 1 depends on the type of the zero power, unless the base of the
expression is a float, in which case the result is a float.

> 1a ~0';

1 (3.215)
> 1a ~0.0';

1.0 (3.216)
> (x22 - 1 + 3)20";

1 (3.217)

There are some exceptions when infinity and undefined values are raised to a float zero
power.

> 'Float(undefined) ~ 0.0';

Float(undefined) + Float(undefined) 1 (3.218)
> 'Float(infinity) ~ 0.0';
Float(undefined) (3:219)
> 'Float(-infinity) ~ (-0.0)';
Float(undefined) — 0.1 (3.220)

Note the distinction between Float(-infinity) * (-0.0) and -Float(infinity) ” (-0.0): the
latter is first automatically simplified to - Float(undefined) and then to Float(undefined).

In Maple, the indeterminate form 0°0 with an exact base is interpreted as 1.

> 040;
1 (3.221)
>0.0 ~ 0;
1. (3.222)
>0 ~0.0;
Float(undefined) (3.223)

Although a complex floating-point zero does not automatically simplify to a real zero, ex-
pressions raised to a complex zero are simplified automatically to an exact or floating-point
unity.

3.9 Arithmetic Expressions * 79

> a*r (0.0 + 0.0*I);
1

(3.224)

Powering of matrices is done in the mathematical sense achieving repeated matrix products.

Powering of arrays is done element-wise.
><1,2;3,4> ~3;

37 54
81 118

> Array([[1,2],[3,4]]) *3;

1 8
27 64

Rational Expressions

Using sums and products, more complicated expressions can be formed.

>expr := (a+a*b) / (a*b - b);
expr = ab+a
ab—b>b

Conceptually, Maple creates the following structure.

(3.225)

(3.226)

(3.227)

80 < 3 Maple Expressions

[SUM‘*l*lj[SUMI*ly*-]D

Figure 3.1: expr DAG

Here, expr is a product of two operands
> nops(expr);

2 (3.228)
> op(expr);

1

ab+ag55:5

(3.229)

and each operand is itself an expression with two operands.

> el, e2 := op(expr);

1
ab—>b

el,e2:=ab+ q, (3.230)

> nops(el); nops(e2);

2 (3.231)

3.9 Arithmetic Expressions * 81

Maple does not automatically simplify the following expression. To perform such simplific-
ations, use the normal command.

> expr := (x - 1)/(x*2 - 1);
expr = X1 (3.232)
X -1 '
> normal(expr);
1
3.233
x+1 ()

The normal command only performs normalization of rational expressions with rational
coefficients.

> expr := ((sin(t)”2 + cos(t)?2)*(x - 1)/(x*2 - 1));
. 2 2
expr i— (sin(t)® + cos(0)?) (x—1) (3.234)
X -1
> normal (expr);
. 2 2
sin(t)” + cos(t) (3.235)
x+1
Note: Use the simplify command to apply more powerful simplifications.
Maple also does not automatically expand the products of sums.
> (a+b) * (c +d);
(a+b) (c+4d) (3.236)

Use the expand command (or the normal command, with the expanded option) to perform
such expansions.

> expr := (a +b) * (c +d);

expr:= (a+ b) (c+d) (3.237)

> expand(expr);

ac+ad+bc+bd (3.238)

> normal (expr, 'expanded');
ac+ad+bc+bd (3.239)

Similarly, you must use the normal command to simplify the following rational expression.

82 « 3 Maple Expressions

> expr2 := expand(expr) / (a + b);
ac+ad+bc+bd
expr2 = 3.240
p a+b (3240
> normal (expr2);
c+d (3.241)

Noncommutative Multiplication

Noncommutative multiplication is represented by the dot operator (.), which is used mainly
in linear algebra computations for multiplication of matrices and vectors. It may also be
used to represent the noncommutative product of other types of mathematical expressions.

A . B; ‘

If A and B are of type constant, then A . B=A * B during the evaluation process (but not
during the automatic simplification process). However, if one of A and B is a Matrix or a
Vector, and the other is a Matrix, Vector, or constant, the product is interpreted as a matrix
or vector product. If A or B is an Array (and the other is not a Matrix or Vector), then A .
B is interpreted as element-wise multiplication. For arguments that are not of type Matrix,
Vector, or constant, A . B remains unevaluated, but more importantly, it is not automatically
simplified to or interpreted as being equal to B . A.

>17 . 6;
42 (3.242)
>17 . 6';
7.6 (3.243)
> A.B <> B.A;
A.B#+B.A (3.244)

> M:=<<1,0,2>|<0,1,2>|<0,0,2>>;

100
M:=|{010 (3.245)
2 22

3.9 Arithmetic Expressions * 83

> V:=<10,0,0>;

10
Vi= 0
0
v;
10
0
20
> lambda . M . V;
10
A.| O
20
= Array([[1,2],[3,4]1]1);
12
34
= Array([[a,b,c],[d,e,£f]1]);
abc
ldef
B;
a 2b
3d4e
B;
3a3b3c
3d3e 3f

The dot character has three meanings in Maple:

(3.246)

(3.247)

(3.248)

(3.249)

(3.250)

(3.251)

(3.252)

- as a decimal point in a floating-point number (for example, 2.3),

- as part of a range (for example, Xx..y), or

84 <« 3 Maple Expressions

- as the noncommutative multiplication operator. To distinguish between these three
cases, Maple uses the following rule: any dot with spaces before and/or after it that
is not part of a number is interpreted as the noncommutative multiplication operator.

For example, 2.3 is a number, 2 . 3 and 2 .3 return 6, and 2. 3 displays an error.
>2.3,2 .3, 2 .3;
2.3,6,6 (3.253)

> 2. 3;

Factorials

The unary, postfix factorial operator ! is used to represent the mathematical factorial opera-
tion.

> 51;
120 (3.254)

Maple can compute large factorials quickly.

> length(1000000!);
5565709 (3.255)

If the argument of the ! operator is symbolic, it is returned unevaluated.
> (a + b)!;

(a+Db)! (3.256)
The argument of the ! operator is subject to automatic simplification, but factorials are not
computed during the automatic simplification process.
> '(2+3)'';

5! (3.257)

If the argument of the ! operator is a float, the expression is computed using the GAMMA
function.

>2.3! = GAMMA(3.3);

2.683437382 = 2.683437382 (3.258)

If the argument is a non-negative integer, Maple computes the factorial. If the argument is
a negative integer, a numeric event is triggered.

3.9 Arithmetic Expressions * 85

> (=3

Error, numeric exception: division by zero

However, if the argument is a negative integer float, the complex number Float(-infinity) -
Float(infinity)*I is returned.

> (-3.0)!;
-Float() — Float(«) I (3.259)

For other arguments, the factorial operator is returned unevaluated after first evaluating its
argument.

> sin(Pi / 6)!;

[1 j ! (3.260)

The command factorial is the same as the ! operator.

> factorial(5);

120 (3.261)

Forming Sums and Products

Since creating structures within loops may be inefficient, Maple provides commands for
creating sums and products efficiently.

add(expression, i=m .. n);

mul (expression, i=m .. n);

where i is a name, m and n are numeric values, and expression is an expression that depends
on i.

The add command is semantically equivalent to the following loop:

>SS :=0;
old := i;
for i from m to n do
S := S+expression;
end do;
i := old;
S; # the result

The add command is more efficient since it does not build each of the many intermediate

sums. The semantics of mul are similar with the exception that if n < m, the result is 1,
rather than 0.

86 < 3 Maple Expressions

> mul (a+i, i=1..4);

(a+1)(a+2)(a+3)(a+4) (3.262)
> add(al|i, i=0..3);

a0+ al +a2+ a3 (3.263)

In the loop example shown above, each of the expressions a0, a0 + al,and a0 + al + a2
are constructed, stored in memory, and then removed by the garbage collector. That overhead
is part of what makes the loop less efficient than the add command in this case.

For more information on the add and mul commands, refer to the add help page. For more
information on the concatenation operator, ||, see The Concatenation Operator (page 109).

Note: The add and mul commands differ from sum and product in that the former are
straightforward construction commands while the latter are commands for computing closed
forms for symbolic sums and products.

3.10 Boolean and Relational Expressions

Boolean Constants

The Boolean constants in Maple are the names true, false and FAIL. These are otherwise
ordinary names, but have a special meaning in a Boolean context.

When you call the Boolean evaluator evalb, the expression passed as its argument is inter-
preted as a Boolean-valued expression if possible, and evaluated as such.

Boolean Operators

Maple supports several operators for the Boolean combination of expressions: net, and,
or, xor, and implies.

The not Operator

The not operator represents logical negation. It has the following general syntax.

not expr

When applied to a Boolean-valued expression, it returns a value according to the following
table.

expr not expr

true false

false true

3.10 Boolean and Relational Expressions < 87

For example,

> not true;

> not false;

> not FAIL;

The and Operator

The and operator represents logical conjunction. It is a binary operator of the form

expr

not expr

FAIL

false

true

FAIL

exprl and expr2

(3.264)

(3.265)

(3.266)

If both operands evaluate to a truth value, the entire expression is evaluated according to

the following truth table.

exprl expr2 exprl and
expr2
true true true
true false false
true FAIL FAIL
false true false
false false false
false FAIL false
FAIL true FAIL
FAIL false false
FAIL FAIL FAIL

If a truth value cannot be determined, the expression is returned unevaluated.

> x and y;

However, some automatic simplifications are applied to and expressions.

> true and x;

x and y

(3.267)

(3.268)

88 ¢ 3 Maple Expressions

The or Operator

The or operator represents logical disjunction. It is a binary operator of the form

exprl or expr2

If both operands evaluate to a truth value, the entire expression is evaluated according to

the following truth table.

exprl expr2 exprl or
expr2
true true true
true false true
true FAIL true
false true true
false false false
false FAIL FAIL
FAIL true true
FAIL false FAIL
FAIL FAIL FAIL

If a truth value cannot be determined, the expression is returned unevaluated.

>x or y;
xory (3.269)
However, some automatic simplifications are applied to or expressions.
> false or x;
X (3.270)

The xor Operator

The xor operator represents logical exclusive disjunction. It is a binary operator of the form

exprl xor expr2

If both of its operands evaluate to truth values, the entire expression is evaluated according
to the following truth table.

exprl expr2 exprl xor
expr2

true true false

true false true

true FAIL FAIL

3.10 Boolean and Relational Expressions < 89

exprl expr2 exprl xor
expr2

false true true

false false false

false FAIL FAIL
FAIL true FAIL
FAIL false FAIL
FAIL FAIL FAIL

The implies Operator

The implies operator represents logical implication. It is a binary operator of the form

exprl implies expr2

If both of its operands evaluate to truth values, the entire expression is evaluated according
to the following truth table.

exprl expr2 exprl implies
expr2
true true true
true false false
true FAIL FAIL
false true true
false false true
false FAIL true
FAIL true true
FAIL false FAIL
FAIL FAIL FAIL

If a truth value cannot be determined, the expression is returned unevaluated.
> x implies y;
X=Yy 3.271)
Some automatic simplifications are applied to implies expressions.
> false implies x;
true (3.272)

> x implies true;

true (3.273)

90 < 3 Maple Expressions

Relational Operators

Relational operators are used to form comparisons to be evaluated in a Boolean context.
The relational operators in Maple are =, <>, <, <=, and in. Each is a binary operator that
accepts two operands. When evaluated in a Boolean context, each of these operators determ-
ines whether its two operands have a certain relationship.

An equation is formed by using the = operator.
> x = v

X=y (3.274)

This has the general form

exprl = expr2

It represents an equation with expr1 as the left-hand side and expr2 as the right-hand side.
When evaluated in a Boolean context, it returns a value of true if its operands are equal,
and returns a value of false otherwise.

> evalb(1

2);
false (3.275)

> evalb(2

2);
true (3.276)

Note that comparing distinct unassigned names returns a value of false.

> evalb(x =y);
false (3.277)

The names x and y are distinct and unequal names in Maple and, when they are unassigned,
they are considered different expressions in a Boolean comparison. If the names x and y
have assigned values, those values are first substituted into the comparison, and the equality
computation is performed on the assigned values, rather than the names themselves.

In general, expressions are compared for equality according to their memory address. That
is, two expressions are considered equal in a Boolean context if they have the same address
in memory. However, for certain expressions, a more mathematical test for equality is used.
For example, the floating-point numbers 2.0000 and 2.0 are considered numerically equal,
even though they are distinct objects in memory.

> evalb(2.0000 = 2.0);

true (3.278)

3.10 Boolean and Relational Expressions ¢ 91

> addressof(2.0000),

18446790986243734750 (3.279)
> addressof(2.0);

18446790986243734782 (3.280)
In fact, when the floating-point number 2.0 is compared to the integer 2, they are considered
equal.
> evalb(2.0 = 2);

true (3.281)

Determining whether two procedures are semantically equivalent is an undecidable problem
in Computer Science. However, procedures which are detectably equivalent by simple
transformations are considered to be equal. For example, it is clear that the name of a pro-

cedure parameter is not normally important, so the following two simple procedures are
considered equal, although they are distinct expressions in memory.

> evalb(proc(x) 2*x end proc = proc(y) 2*y end proc);
true (3.282)

An inequation can be formed by using the <> operator. The general form is

exprl <> expr2

This expression represents non-equality and returns a value of true if its operands are un-
equal, and false if its operands are equal.

>x <>y

X£Y (3.283)
> evalb(1 <> 2);

true (3.284)
> evalb(2 <> 2);

false (3.285)

Testing for inequality is performed similarly to testing for equality. Comparing two distinct
unassigned names using the <> operator computes the equality of the names. The expression

> evalb(x <>y);

true (3.286)

returns a value of true because the names x and y are distinct as names.

92 « 3 Maple Expressions

A strict inequality is created by using the < operator. This has the general form

‘exprl < expr2

and can also be constructed using the form

‘exprl > expr2

For example,

>x <y

X<y (3.287)
You can also use the > operator.
>y > x;

X<y (3.288)

Maple automatically converts this to the same expression as results from the first form.

When evaluated in a Boolean context, Maple performs the indicated mathematical compar-
ison, or returns the inequality as unevaluated if the operands do not evaluate to comparable
expressions. If the operands are comparable, the inequality evaluates to the value true if
the first operand is less than, but not equal to, the second operand, and evaluates to false
otherwise. If the operands are not comparable, the inequality evaluates to itself.

A non-strict inequality is formed using the <= operator. This has the general form

‘exprl <= expr2

It can also be constructed using the form

‘exprl >= expr2

For example,
> x <= v

x<y (3.289)

When evaluated in a Boolean context, and when the operands are comparable, it returns a
value of either true or false according to whether the first operand is less than, or equal to,
the second operand.

Membership is represented by the in operator. It is used in the general form

exprl in expr2

When evaluated in a Boolean context, it evaluates to the value true if its first operand exprl
is a member of its second operand expr2. If expr1 does not belong to expr2, the expression

3.10 Boolean and Relational Expressions « 93

evaluates to false. Maple can determine a truth value if the second operand expr2 is a con-
tainer object; that is, either a set or list, or an unevaluated function call of the form SetOf(
T), where T is a Maple type. An expression of the form

‘expr in SetOf(T) ‘

where T is a Maple type is equivalent to the expression type(expr, T).

>evalb(1 in { 1, 2, 3});

true (3.290)
> evalb(5 in {1, 2, 3});

false (3.291)
> evalb(x in X);

xe X (3.292)

> evalb(2 in SetOf(integer));
true (3.293)
> evalb(2/3 in SetOf(integer));

false (3.294)

Note the simplification applied to the statement with the evalb command in the following
example.

> x in A union B;
xe AUB (3.295)
> evalb(x in A union B);

xe Aorx e B (3.296)

If the second operand is not an explicit container object, the expression remains an unevalu-
ated in expression. However, some automatic simplifications may be applied.

Efficient Boolean Iteration

In the same way the commands add and mul can be used to efficiently form + and * expres-
sions, conjunctions and disjunctions can be evaluated efficiently using the andmap and
ormap commands, which are similar to the map command described in Maple

Statements (page 169).

andmap (procedure, expression, ...)

94 « 3 Maple Expressions

ormap (procedure, expression, ...)

The following example considers type(element,name) for each element of the list. ormap
determines whether this statement is true for at least one element of the list. andmap de-
termines whether this statement is true for all the elements of the list.

> ormap (type, [1, "a", "a’, a()], name);
true (3.297)
> andmap (type, [1, "a", "a’, a()], name);

false (3.298)

The main difference between these commands and map is that andmap and ormap have
short-circuit ("McCarthy") semantics, which means that an answer is returned as soon as it
can be determined.

> andmap (proc (x) print(x); x<2 end proc, [1,2,3,4]);
1
2

false (3.299)

3.11 Expressions for Data Structures

This section describes basic concepts related to data structure expressions. For more inform-
ation on programming with data structures, see Basic Data Structures (page 125).

Sequences

The most basic aggregate expression type in Maple is the sequence. Sequences are formed
by using the *," (comma) operator.

>a, 2/3, sin(x), 5.1;

2

3 sin(x), 5.1 (3.300)

a,

A sequence consists of zero or more other expressions, called elements or members. A se-
quence with exactly one member is automatically simplified to its unique member. The
empty sequence, containing zero members, is the value of the name NULL, and may be
written as ().

> evalb(() = NULL);

true (3.301)

3.11 Expressions for Data Structures * 95

Sequences occur in many other data structures as a (principal) component, within which
they acquire additional semantics. Some examples include lists, sets, and function calls.

Automatic simplification of sequences is affected by recursively simplifying the component
expressions.
>'2+3,1-7, 000, sin(Pi / 6)"';

5, -6, 1, sin[% n] (3.302)

Nested sequences are also flattened during the automatic simplification process.
>'(1,2), 3, (4, 5)";

1,2,3,4,5 (3303)

Because sequences are used to pass multiple arguments to procedures, it is not normally
possible to operate on a sequence as such (the list type described below is designed for ex-
actly for that reason). For example, you cannot pass a (nontrivial) sequence to the type
command to check its type. Therefore, there is no Maple type for sequences. However, the
whattype command returns the name exprseq when it is passed either zero or more than
one argument.

> whattype () ;

exprseq (3.304)
> whattype(1, 2);

exprseq (3.305)
Note that the name exprseq is not the name of any valid type in Maple.

Similarly, you cannot query the zeroth operand of a sequence. For example, the following
results in an error.

>op(0, (1,2, 3));

Error, invalid input: op expects 1 or 2 arguments, but received 4

This is because the sequence 0, (1, 2, 3) is flattened to the sequence 0, 1, 2, 3 during
automatic simplification of the function call before the op command is actually called.
Therefore, the op command is passed four arguments instead of only the two that are appar-
ently intended.

There is no constructor for sequences, but there is a built-in command for creating sequences,
called seq. The basic syntax of seq is below. It accepts many other types of arguments as
well.

96 <« 3 Maple Expressions

seq(expression, 1 = integerl..integer?2)

> seq(i*2, i =1 .. 5);

1,4,9,16, 25 (3.306)
> seq(2 .. 14);
2,3,4,5,6,7,8,9,10,11,12,13, 14 (3.307)
>seq(i, i =0.4 .. 1.1, 0.3);
0.4,0.7,1.0 (3.308)

For more information on the seq command, refer to the seq help page.

Another way to create sequences is to use the dollar sign ($) operator.

expression $ 1 = integerl .. integer2

>i*2 $i=1..5;
1,4,9,16, 25 (3.309)

The dollar sign operator is a binary operator that performs a similar function to the seq
command, but behaves slightly differently: the $ operator evaluates the expression argument
once before any substitutions, while the command does not evaluate until after each substi-
tution of i.

> cat(a,x) $ x=1..2;
ax, ax (3.310)
> seq(cat(a,x), x=1..2);

al, a2 (3.311)

In general, it is recommended that you use the seq command instead of the dollar sign op-
erator.

Lists

Lists are created by enclosing a sequence of expressions between square brackets. Lists are
essentially sequences, which are designated as a single unit for other operations.

[sequence]

>[1, 2, 31;
[1,2,3] (3.312)

Unlike sequences, lists can form properly nested structures.

3.11 Expressions for Data Structures * 97

>[1,2,[3,411;
[1,2,[3,4]] (3.313)

Use the numelems command to determine the number of members in the enclosed sequence.
Note that lists can contain sublists. These are still counted as a single entry.

> numelems([1, 2, 31);
3 (3.314)
>numelems([1, 2, [3, 411);

3 (3.315)

To access the i-th operand of a list, use an index to the list expression.
>L :=[a, b, ¢, d1;

L:==[a, b c d] (3.316)
> L[3 1;

C (3.317)

To access the sequence of all elements in a list, use the op command. Converting back and
forth between lists and sequences can be a common operation, and is very efficient.

> Lseq := op(L);

Lseq:=a, b, ¢, d (3.318)
> L2 := [op(L), op(L) 1;

L2:=[a,bcd ab,cd (3.319)

It is common to create a list by using the seq command to create the enclosed sequence.
> [seq(i®*2, i =1 ..5) 1;

[1,4,9,16,25] (3.320)
Lists are ordered; two lists with the same members in a different order are distinct.
>evalb([1, 2, 3] =102,1,31);

false (3.321)

Lists are immutable; you cannot change the elements of a list once it has been created. You
can, however, create a new list using members of an existing list or lists.

In the next example, we create a new list with second entry d.

98 « 3 Maple Expressions

>L:=[a, b, cl;

L:=1a, b c] (3.322)
>L2 := [L[11],d, L[311;

L2:=[a,d, c] (3.323)
You can also use the subsop command for this purpose.
> 13 := subsop(2 =d, L);

L3:=[a,d, c] (3.324)
> evalb(L2 = L3);

true (3.325)

The example above creates a new list using the original list L by substituting its second
operand for the expression d. If you need to change elements frequently it is usually better
to use an array. Arrays can be changed in-place avoiding the need for a copy. For more in-
formation on the subsop command, refer to the subsop help page.

For more information about lists, see Lists (page 126).

Sets

Sets, similar to lists, are created from a sequence of expressions. However, sets use braces
({}) to enclose the sequence.

‘ { sequence }

> {3, 2, 1};
{1,2,3} (3.326)

In addition to the syntactical differences, sets differ from lists in that they are implicitly
sorted and do not have duplicate entries. These two properties are enforced during the
automatic simplification process.

> '{31 _11 0}';
{-1,0, 3} (3.327)
>'"{1, 1, 1, 1}';

{1} (3.328)

In Maple 11 and earlier, the ordering of sets was unpredictable as it was based on the posi-
tions of the elements in memory. In Maple 12 and later, set ordering is deterministic, session
independent, and based on properties of the contents. This just means that the same set will

3.11 Expressions for Data Structures * 99

now appear in the same order even after restarting Maple. For more information on the or-
dering of sets, refer to the set help page.

For more information on how to use sets in programming, see Sets (page 132). More inform-
ation on Maple expressions related to sets will be described later in this chapter.

Tables

Tables are mutable data structures that associate an index with an entry. Both the index and
entry can be arbitrary expressions. The underlying structure is sparse (a hash table), and
expands as more entries are inserted.

> T := table();

T := table([]) (3.329)
> T[color] := "red";

T ior = red (3.330)
> T[color];

"red" (3.331)

>T[1,2,3] := x"2+4;

T, 5 3= X +4 (3.332)

Assigning values to indexed names is further described in Indexed Expressions (page 62).

Tables can be initially populated by providing a list of equations as an argument to the table
constructor.

> T := table([a=1l, b=2, c=3, d=4]);
T:= table([b=2,d=4,c=3,a=1]) (3.333)

> T[a] + Tlc];
4 (3.334)
For names with tables assigned to them, last name evaluation rules apply. Last name evalu-
ation is explained in more detail in Evaluation Rules for Tables (page 141). The most visible

effect of last name evaluation is that the name of the table is displayed by default rather
than all of its entries.

>T;

T (3.335)

100 « 3 Maple Expressions

> eval(T);

table([b=2,d=4,c=3,a=1]) (3.336)

Rectangular Tables

Rectangular tables, or rtables, are mutable data structures that associate a numeric index
sequence with an arbitrary entry. The bounds of the index are predefined and directly cor-
respond to the amount of memory reserved to hold entries.

The same rtable data structure is used to implement arrays, matrices, and vectors.

> A := Array(0..5,i->2%i);
A= Array(0.5,{1=2,2=4,3=6,4=8,5 =10},
datatype = anything, storage = rectangular, ovder (3:337)
= Fortran_order)
> A[0];
0 (3.338)
> A[3];
10 (3.339)
>V := Vector([1,2,3]);
1
Vi= |2 (3.340)
3
> V[1];
1 (3.341)

> M := Matrix(3,3,shape=identity) ;

100
M:=[{010 (3.342)
001
> M[2,2];

1 (3.343)

3.12 Set-Theoretic Expressions * 101

Rectangular tables are very flexible and offer a rich set of features. For a more in-depth
discussion of them, see Arrays (page 144).

3.12 Set-Theoretic Expressions

Maple includes a full set of set-theoretic operators for membership relation, set inclusion,
and other operations.

Membership

In Maple, the set membership relation is expressed by using the in operator. It has the fol-
lowing syntax.

a in b

where @ and b can be arbitrary expressions.
Normally, a membership expression is returned unevaluated.
> a in b;
achb (3.344)
>1in {1, 2, 3 };

1 € {1,2,3} (3.345)

However, when evaluated in a Boolean context, one of the values true and false is returned
if the expression b evaluates to a set or list and Maple can determine whether the expression
a belongs to the expression b. For more information on Boolean evaluation of membership
expressions, see Boolean and Relational Expressions (page 86).

Use the rhs and lhs commands to extract the right or left hand side of the an in operator.
> 1lhs(a in b);

a (3.346)
>rhs(a in b);

b (3.347)

Set Inclusion

Set inclusion (the subset relation) is represented in Maple by the binary subset operator. It
has the following syntax.

a subset b

where a and b are arbitrary expressions that can evaluate to sets.

102 « 3 Maple Expressions

> a subset b;
ach

> {1, 2} subset {2, 3, 5 };

false
> {} subset T;

true
> T subset {};

T={}

(3.348)

(3.349)

(3.350)

(3.351)

If Maple can determine whether the expressed relation is true or false, the expression eval-

uates to true or false. Otherwise, the expression is returned unevaluated.

An unevaluated set inclusion expression has two operands a and b.

> nops(a subset b);

> op(a subset b);
a, b

The individual operands can be accessed by using the lhs and rhs commands.

> lhs(a subset b);

> rhs(a subset b);

b

Other Binary Operators for Sets

(3.352)

(3.353)

(3.354)

(3.355)

You can create new sets from existing sets by using any of the binary set-theoretic operators.

The union of two sets is created by using the union operator, which has the following syntax.

a union b

where a and b are expressions that can evaluate to a set.

> a union b;

aub

(3.356)

3.12 Set-Theoretic Expressions « 103

>{1, 2 }) union { 2, 3, 4 };
(1,2, 3,4} (3.357)
> {1, 2} union T;

T U {1,2} (3.358)

The following expression displays an error message, since the second operand cannot
evaluate to a set.
> { a, b, ¢} union "a string";

Error, invalid input: ‘union’ received a string, which is not wvalid

for its 2nd argument

A union expression may be returned unevaluated, and the operands of an unevaluated union
expression a union b are the expressions a and b.

> nops(a union b);

2 (3.359)
> op(a union b);

a,b (3.360)
Note that the union operation is commutative.
> a union b;

aub (3.361)

> b union a;

aub (3.362)

The union operation is also associative. A union of three or more operands returns an une-
valuated function call.

> a union b union c;
union(a, b, c) (3.363)
The union operation performs certain normalizations.
> a union a;
a (3.364)
> {} union a;

a (3.365)

104 - 3 Maple Expressions

Intersections of sets are represented using the intersect operator, which has the general
syntax.

a intersect b

The operands a and b are expressions that can evaluate to a set.
> a intersect b;
anb (3.366)
>{ 1, 2, 3} intersect { 3, 4, 5 };
{3} (3.367)
> {} intersect T;

{} (3.368)

Note that although union and intersection are mutually distributive, neither distributes
automatically over the other in a symbolic expression. However, the expand command can
distribute intersections over unions.

> expand(a intersect (b union c));
anNnbuUuanc (3.369)

Maple takes the canonical form of a set-theoretic expression to be a union of intersections,
so the expand command does not distribute symbolic unions over intersections.

> expand(a union (b intersect c));

alJUbnc (3.370)

3.13 Other Expressions

Functional Operators

The operator -> (arrow) can be used as a short-hand form to create procedures inline in
commands which take procedures as arguments such as Array constructors and the map
command.

(vars) -> result

The following two procedures are identical except in how they are displayed:

> x -> x°2;

X=X (3.371)

3.13 Other Expressions * 105

> proc(x) x*2 end proc;
proc(x) xA2 end proc (3.372)

as are these two:

> (x,y,2z) -> sqgrt(x*2+y*2+z"2);

o) P 2 637

> proc(x,y,z) sqrt(x*2+y*2+z*2) end proc;
proc(x, y, z) sqrt(xA2 + yA2 + zA2) end proc (3.374)

For more information on the arrow operator, refer to the operators,functional help page. For
more information on procedures, see Procedures (page 195).

Composition

Use the operators @ and @@ to represent the composition (of functions). The operator @
denotes the composition of functions and takes the general form

feg ‘

where each of f and g can be an arbitrary expression.

> (fQg) (x);
f(g(x)) (3.375)

Note that @ has lower precedence than function application, so that the parentheses sur-
rounding f@g above are necessary:

> flg(x);

f@g(x) (3.376)

The @ operator performs numerous simplifications and normalizations, and is (left) associ-
ative.

> (exp @ 1n) (s);
S (3.377)
>a@b@ca@d;
a@b@c@d (3.378)

Repeated composition is represented by the operator @@. It has the general form

106 « 3 Maple Expressions

£ @@ n

This denotes the n-fold composition of a function f.

> expand((£@@3)(x));
FUFUFN)) 3379

Note that the iterated composition is not automatically expanded in the example above. It
is necessary to apply the expand command.

It is important to distinguish repeated composition of an expression from the arithmetic
power. The former is represented in Maple using the @@, operator, while the latter is rep-
resented using the * operator.

> expand((£Q@Q2)(x));

f(f(x)) (3.380)

> (£%2) (%);

f(x)2 (3.381)

The first example above denotes the 2-fold composition of f with itself, while the second

denotes the arithmetic square of . In particular, although the inverses of the circular functions
are commonly denoted by a power-like notation in written mathematics, in Maple, for ex-

ample, sin”(-1) denotes the reciprocal of the sin function, while sin@@(-1) denotes the
arcsine (arcsin).

> sin@@(-1) ;

arcsin (3.382)
> (sin@arcsin) (x);
X (3.383)
> sin® (-1);
i (3.384)
> (sin®(-1)) (x);
1

sin(0 (3.385)

3.13 Other Expressions + 107

Neutral Operators

Neutral operators are constructions that are treated as operators by Maple, but that have no
predefined meaning so that they can be customized.

A neutral operator symbol is formed by the ampersand character (&) followed either by a
valid Maple name not containing ?, or by a sequence of one or more special characters. For
more information, refer to the neutral help page.

a &name b

> expr := a &your operator name here b;
expr := a &your_operator_name_here b (3.386)

A commonly used neutral operator is &* which is often used for representing a non-com-
mutative multiplication. Unlike dot (.), it does not automatically combine scalar constants.

> 1 gx 2;
1&*2 (3.387)

>1 . 2;
2 (3.388)

Ranges

The .. operator is used to construct ranges, and usually has the following syntax.

a .. b

in which the endpoints a and b can be arbitrary expressions.

It is important to distinguish between a range expression, such as 3 .. 7, with explicit numeric
endpoints, and the corresponding sequence 3, 4, 5, 6, 7. The seq command can be used to
produce the latter from the former.

Often, a range is used in an expression of the form i =a .. b, as an argument to a command
(such as add), and denotes the range over which an index such as i is to vary.

>add(i*2, i =1 .. 5);

55 (3.389)

A consecutive sequence of two or more dots (.) is parsed as a range operator. For example,

2.7 (3.390)

108 « 3 Maple Expressions

If the left-hand endpoint of a range is a float ending with a decimal point, or if the right-
hand endpoint is a float beginning with a decimal point, it is therefore necessary to separate
the endpoint from the range operator with one or more space characters.

>2....3;

2.3 (3.391)

2..0.3 (3.392)

The number of operands of a range expression is equal to 2.
>nops(a .. b);
2 (3.393)
The operands are the left and right-hand endpoints.
>op(a .. b);
a, b (3.394)
Use the lhs and rhs commands to extract the individual operands of a range expression.
>1lhs(a .. b);
a (3.395)
>rhs(a .. b);
b (3.396)
The type of a range expression is range or the equivalent form ..’
> type(a .. b, 'range');
true (3.397)
> type(a .. b, '""..°"),
true (3.398)
Ranges can be used to index complex data structures as well as strings and sequences.
>[1,2,3,4,51[2 .. 3 1;
[2,3] (3.399)
>{1, 2,3, 4,51} 2..31;

(2,3} (3.400)

3.13 Other Expressions * 109

> "abede"[2 .. 3 1;

"bc" (3.401)
>(1,2,3,4,5)[2..31];
2,3 (3.402)

There is a special form of input syntax for ranges in which one or both endpoints is missing.

> .

()-() (3.403)

In the example above, each endpoint is the empty sequence () (or NULL). It is valid to omit
just one of the endpoints.

>a .

.7

a.() (3.404)

().b (3.405)

When used in this way to index a data structure, a missing endpoint denotes the end of the
valid range of indices.

>[01, 2,3, 4 51[3..1;

[3,4,5] (3.406)
>[01, 2, 3, 4, 51[.. 4 1;
[1,2,3,4] (3.407)
>[11,2, 3, 4,51[.. 1
[1,2,3,4,5] (3.408)

Note the distinction between the third example above and the following example
>[1, 2,3, 4, 51II;
1,2,3,4,5 (3.409)

in which the index is empty.

The Concatenation Operator

The operator || denotes the concatenation of names and strings. It takes the general form

110 + 3 Maple Expressions

all b

in which the first operand a can be either a name or a string, and the second operand b can
be a name, a string, an integer, an integral range, a character range, or an expression sequence
of names, strings, and integers. If the second operand b is another kind of expression, an
unevaluated || expression is returned.

> "foo" || "bar";
"foobar" (3.410)
> foo || bar;
foobar (3.411)
> foo || "bar";
foobar (3.412)
> "foo" || bar;
"foobar" (3.413)
>x |l 1;
x1 (3.414)
>x || (1..3);
x1, x2, x3 (3.415)
>"x" |l (1,2,3);
"x1", "x2", "x3" (3.416)
>x || ("a" .. "f");
xa, Xb, xc, xd, xe, xXf (3.417)
>x || ("s", "t", "w");
XS, Xt, Xw (3.418)
>f(y) Il t;
(f) It (3.419)

The type of the result, if not an unevaluated || expression, is determined by the type of the
first operand. If the first operand a is a string, the type of the result (or results, in the case
of a sequence) is a string. If the first operand is a name, the type of the result, or results, is
a name.

3.13 Other Expressions <« 111

The first operand of the || operator is not evaluated, but the second operand is.
>u = 2: v := 3:
>u || v;

u3 (3.420)

The symbol *||", which must be enclosed in left single quotes when not used as an infix op-
erator, is a type name.

>type(£(y) Il & " 117");
true (3421)
If a concatenation expression is returned unevaluated, it has two operands.
>mnops(£(s) || t);
2 (3.422)
>op(£(s) II| t);

f(s), t (3.423)

For most applications, the cat command is more appropriate, as it evaluates all of its argu-
ments. For more information, refer to the cat help page.

The Double Colon Operator

The :: (double colon) operator is used to represent a type test, and takes two operands in
the following form.

‘ expr :: t

where expr is an arbitrary expression, and t is a type expression. When evaluated in a
Boolean context, it is equivalent to type(expr, t).

>e<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>